Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121657

RESUMO

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.


Assuntos
Epigênese Genética/genética , Inflamação/genética , Neuroblastoma/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Nucleotidiltransferases/genética , RNA de Cadeia Dupla/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Transcriptoma/genética
2.
Haematologica ; 109(1): 272-282, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199121

RESUMO

Subsets of multiple myeloma (MM) and monoclonal gammopathies of undetermined significance (MGUS) present with a monoclonal immunoglobulin specific for hepatitis C virus (HCV), thus are presumably HCV-driven, and antiviral treatment can lead to the disappearance of antigen stimulation and improved control of clonal plasma cells. Here we studied the role of hepatitis B virus (HBV) in the pathogenesis of MGUS and MM in 45 HBV-infected patients with monoclonal gammopathy. We analyzed the specificity of recognition of the monoclonal immunoglobulin of these patients and validated the efficacy of antiviral treatment (AVT). For 18 of 45 (40%) HBV-infected patients, the target of the monoclonal immunoglobulin was identified: the most frequent target was HBV (n=11), followed by other infectious pathogens (n=6) and glucosylsphingosine (n=1). Two patients whose monoclonal immunoglobulin targeted HBV (HBx and HBcAg), implying that their gammopathy was HBV-driven, received AVT and the gammopathy did not progress. AVT efficacy was then investigated in a large cohort of HBV-infected MM patients (n=1367) who received or did not receive anti-HBV treatments and compared to a cohort of HCV-infected MM patients (n=1220). AVT significantly improved patient probability of overall survival (P=0.016 for the HBV-positive cohort, P=0.005 for the HCV-positive cohort). Altogether, MGUS and MM disease can be HBV- or HCV-driven in infected patients, and the study demonstrates the importance of AVT in such patients.


Assuntos
Hepatite B , Hepatite C , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/fisiologia , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/etiologia , Antivirais/uso terapêutico
3.
Microsc Microanal ; 30(1): 151-159, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38302194

RESUMO

Analysis of bone marrow aspirates (BMAs) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed based on a visual examination of samples under a conventional optical microscope, which involves a labor-intensive process, limited by clinical experience and subject to high observer variability. In this work, we present a comprehensive digital microscopy system that enables BMA analysis for cell type counting and differentiation in an efficient and objective manner. This system not only provides an accessible and simple method to digitize, store, and analyze BMA samples remotely but is also supported by an Artificial Intelligence (AI) pipeline that accelerates the differential cell counting process and reduces interobserver variability. It has been designed to integrate AI algorithms with the daily clinical routine and can be used in any regular hospital workflow.


Assuntos
Inteligência Artificial , Doenças Hematológicas , Humanos , Medula Óssea , Microscopia , Doenças Hematológicas/diagnóstico , Algoritmos
4.
Immun Ageing ; 20(1): 55, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853468

RESUMO

Osteoporosis is a skeletal disease that can increase the risk of fractures, leading to adverse health and socioeconomic consequences. However, current clinical methods have limitations in accurately estimating fracture risk, particularly in older adults. Thus, new technologies are necessary to improve the accuracy of fracture risk estimation. In this observational study, we aimed to explore the association between serum cytokines and hip fracture status in older adults, and their associations with fracture risk using the FRAX reference tool. We investigated the use of a proximity extension assay (PEA) with Olink. We compared the characteristics of the population, functional status and detailed body composition (determined using densitometry) between groups. We enrolled 40 participants, including 20 with hip fracture and 20 without fracture, and studied 46 cytokines in their serum. After conducting a score plot and two unpaired t-tests using the Benjamini-Hochberg method, we found that Interleukin 6 (IL-6), Lymphotoxin-alpha (LT-α), Fms-related tyrosine kinase 3 ligand (FLT3LG), Colony stimulating factor 1 (CSF1), and Chemokine (C-C motif) ligand 7 (CCL7) were significantly different between fracture and non-fracture patients (p < 0.05). IL-6 had a moderate correlation with FRAX (R2 = 0.409, p < 0.001), while CSF1 and CCL7 had weak correlations with FRAX. LT-α and FLT3LG exhibited a negative correlation with the risk of fracture. Our results suggest that targeted proteomic tools have the capability to identify differentially regulated proteins and may serve as potential markers for estimating fracture risk. However, longitudinal studies will be necessary to validate these results and determine the temporal patterns of changes in cytokine profiles.

5.
Mol Ther ; 28(2): 548-560, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31870622

RESUMO

The prognosis of patients diagnosed with advanced ovarian or endometrial cancer remains poor, and effective therapeutic strategies are limited. The Müllerian inhibiting substance type 2 receptor (MISIIR) is a transforming growth factor ß (TGF-ß) receptor family member, overexpressed by most ovarian and endometrial cancers while absent in most normal tissues. Restricted tissue expression, coupled with an understanding that MISIIR ligation transmits apoptotic signals to cancer cells, makes MISIIR an attractive target for tumor-directed therapeutics. However, the development of clinical MISIIR-targeted agents has been challenging. Prompted by the responses achieved in patients with blood malignancies using chimeric antigen receptor (CAR) T cell therapy, we hypothesized that MISIIR targeting may be achieved using a CAR T cell approach. Herein, we describe the development and evaluation of a CAR that targets MISIIR. T cells expressing the MISIIR-specific CAR demonstrated antigen-specific reactivity in vitro and eliminated MISIIR-overexpressing tumors in vivo. MISIIR CAR T cells also recognized a panel of human ovarian and endometrial cancer cell lines, and they lysed a battery of patient-derived tumor specimens in vitro, without mediating cytotoxicity of a panel of normal primary human cells. In conclusion, these results indicate that MISIIR targeting for the treatment of ovarian cancer and other gynecologic malignancies is achievable using CAR technology.


Assuntos
Neoplasias dos Genitais Femininos/imunologia , Imunoterapia Adotiva , Neoplasias Ovarianas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Peptídeos/imunologia , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Feminino , Neoplasias dos Genitais Femininos/terapia , Humanos , Camundongos , Neoplasias Ovarianas/terapia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070369

RESUMO

Folate receptor beta (FRß) is a folate binding receptor expressed on myeloid lineage hematopoietic cells. FRß is commonly expressed at high levels on malignant blasts in patients with acute myeloid leukemia (AML), as well as on M2 polarized tumor-associated macrophages (TAMs) in the tumor microenvironment of many solid tumors. Therefore, FRß is a potential target for both direct and indirect cancer therapy. We demonstrate that FRß is expressed in both AML cell lines and patient-derived AML samples and that a high-affinity monoclonal antibody against FRß (m909) has the ability to cause dose- and expression-dependent ADCC against these cells in vitro. Importantly, we find that administration of m909 has a significant impact on tumor growth in a humanized mouse model of AML. Surprisingly, m909 functions in vivo with and without the infusion of human NK cells as mediators of ADCC, suggesting potential involvement of mouse macrophages as effector cells. We also found that TAMs from primary ovarian ascites samples expressed appreciable levels of FRß and that m909 has the ability to cause ADCC in these samples. These results indicate that the targeting of FRß using m909 has the potential to limit the outgrowth of AML in vitro and in vivo. Additionally, m909 causes cytotoxicity to TAMs in the tumor microenvironment of ovarian cancer warranting further investigation of m909 and its derivatives as therapeutic agents in patients with FRß-expressing cancers.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor 2 de Folato , Imunoterapia , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Neoplasias Ovarianas , Animais , Células CHO , Cricetulus , Feminino , Receptor 2 de Folato/antagonistas & inibidores , Receptor 2 de Folato/imunologia , Células HL-60 , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Células THP-1 , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Am Chem Soc ; 142(14): 6554-6568, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191035

RESUMO

Universal immune receptors represent a rapidly emerging form of adoptive T-cell therapy with the potential to overcome safety and antigen escape challenges faced by conventional chimeric antigen receptor (CAR) T-cell therapy. By decoupling antigen recognition and T-cell signaling domains via bifunctional antigen-specific targeting ligands, universal immune receptors can regulate T-cell effector function and target multiple antigens with a single receptor. Here, we describe the development of the SpyCatcher immune receptor, the first universal immune receptor that allows for the post-translational covalent attachment of targeting ligands at the T-cell surface through the application of SpyCatcher-SpyTag chemistry. The SpyCatcher immune receptor redirected primary human T cells against a variety of tumor antigens via the addition of SpyTag-labeled targeting ligands, both in vitro and in vivo. SpyCatcher T-cell activity relied upon the presence of both target antigen and SpyTag-labeled targeting ligand, allowing for dose-dependent control of function. The mutational disruption of covalent bond formation between the receptor and the targeting ligand still permitted redirected T-cell function but significantly compromised antitumor function. Thus, the SpyCatcher immune receptor allows for rapid antigen-specific receptor assembly, multiantigen targeting, and controllable T-cell activity.


Assuntos
Engenharia Genética/métodos , Linfócitos T/imunologia , Humanos , Ligantes
8.
Gynecol Oncol ; 156(1): 222-232, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818495

RESUMO

OBJECTIVE: The aim of this study was to "humanize" ovarian cancer patient-derived xenograft (PDX) models by autologous transfer of patient-matched tumor infiltrating lymphocytes (TILs) to evaluate immunotherapies. METHODS: Orthotopic high-grade serous ovarian cancer (HGSOC) PDX models were established from three patient donors. Models were molecularly and histologically validated by immunohistochemistry. TILs were expanded from donor tumors using a rapid expansion protocol. Ex vivo TIL and tumor co-cultures were performed to validate TIL reactivity against patient-matched autologous tumor cells. Expression of TIL activation markers and cytokine secretion was quantitated by flow cytometry and ELISA. As proof of concept, the efficacy of anti-PD-1 monotherapy was tested in autologous TIL/tumor HGSOC PDX models. RESULTS: Evaluation of T-cell activation in autologous TIL/tumor co-cultures resulted in an increase in HLA-dependent IFNγ production and T-cell activation. In response to increased IFNγ production, tumor cell expression of PD-L1 was increased. Addition of anti-PD-1 antibody to TIL/tumor co-cultures increased autologous tumor lysis in a CCNE1 amplified model. Orthotopic HGSOC PDX models from parallel patient-matched tumors maintained their original morphology and molecular marker profile. Autologous tumor-reactive TIL administration in patient-matched PDX models resulted in reduced tumor burden and increased survival, in groups that also received anti-PD-1 therapy. CONCLUSIONS: This study validates a novel, clinically relevant model system for in vivo testing of immunomodulating therapeutic strategies for ovarian cancer, and provides a unique platform for assessing patient-specific T-cell response to immunotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Feminino , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias/métodos , Neoplasias Ovarianas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia
9.
Gynecol Oncol ; 145(3): 426-435, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28377094

RESUMO

Immunotherapies have achieved remarkable success in treating different forms of cancer including melanoma, non-small cell lung carcinoma, bladder cancer, synovial cell sarcoma, and multiple myeloma using immune checkpoint blockade or gene-engineered T-cells. Although gynecologic cancers have not been historically classified as immunogenic tumors, growing evidence has shown that they are in fact able to elicit endogenous antitumor immune responses suggesting that patients with these cancers may benefit from immunotherapy. Modest clinical success has been accomplished in early trials using immunotherapeutic modalities for major gynecologic cancers including ovarian, cervical, and endometrial cancer. Unlike solid cancers with high mutational burdens, or hematologic malignancies where target antigens are expressed homogenously and exclusively by tumor cells, identifying tumor-restricted antigens has been challenging when designing a T-cell targeted therapy for gynecologic tumors. Nevertheless, mounting preclinical and clinical evidence suggests that targeting shared, viral or patient-specific mutated antigens expressed by gynecologic tumors with T-cells may improve patient outcome. Here we review the strengths and weaknesses of targeting these various antigens, as well as provide insight into the future of immunotherapy for gynecologic cancers.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias dos Genitais Femininos/imunologia , Neoplasias dos Genitais Femininos/terapia , Linfócitos T/imunologia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Feminino , Humanos , Imunoterapia , Imunoterapia Adotiva , Terapia de Alvo Molecular
10.
Mol Ther ; 22(5): 986-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24448161

RESUMO

Human and canine cancer share similarities such as genetic and molecular aspects, biological complexity, tumor epidemiology, and targeted therapeutic treatment. Lack of good animal models for human adenovirotherapy has spurred the use of canine adenovirus 2-based oncolytic viruses. We have constructed a canine oncolytic virus that mimics the characteristics of our previously published human adenovirus ICOVIR17: expression of E1a controlled by E2F sites, deletion of the pRb-binding site of E1a, insertion of an RGD integrin-binding motif at the fiber Knob, and expression of hyaluronidase under the major late promoter/IIIa protein splicing acceptor control. Preclinical studies showed selectivity, increased cytotoxicity, and strong hyaluronidase activity. Intratumoral treatment of canine osteosarcoma and melanoma xenografts in mice resulted in inhibition of tumor growth and prolonged survival. Moreover, we treated six dogs with different tumor types, including one adenoma, two osteosarcomas, one mastocitoma, one fibrosarcoma, and one neuroendocrine hepatic carcinoma. No virus-associated adverse effects were observed, but toxicity associated to tumor lysis, including disseminated intravascular coagulation and systemic failure, was found in one case. Two partial responses and two stable diseases warrant additional clinical testing.


Assuntos
Melanoma/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Osteossarcoma/terapia , Adenovirus Caninos/genética , Animais , Cães , Humanos , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/uso terapêutico , Melanoma/genética , Melanoma/veterinária , Camundongos , Osteossarcoma/genética , Osteossarcoma/veterinária , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Methods Mol Biol ; 2748: 151-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070114

RESUMO

CAR-T cell therapy is revolutionizing the treatment of hematologic malignancies. However, there are still many challenges ahead before CAR-T cells can be used effectively to treat solid tumors and certain hematologic cancers, such as T-cell malignancies. Next-generation CAR-T cells containing further genetic modifications are being developed to overcome some of the current limitations of this therapy. In this regard, genome editing is being explored to knock out or knock in genes with the goal of enhancing CAR-T cell efficacy or increasing access. In this chapter, we describe in detail a protocol to knock out genes on CAR-T cells using CRISPR-Cas9 technology. Among various gene editing protocols, due to its simplicity, versatility, and reduced toxicity, we focused on the electroporation of ribonucleoprotein complexes containing the Cas9 protein together with sgRNA. All together, these protocols allow for the design of the knockout strategy, CAR-T cell expansion and genome editing, and analysis of knockout efficiency.


Assuntos
Edição de Genes , Neoplasias , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Linfócitos T , Neoplasias/genética
12.
Clin Cancer Res ; 30(4): 904-917, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38109212

RESUMO

PURPOSE: The gut microbiota plays important roles in health and disease. We questioned whether the gut microbiota and related metabolites are altered in monoclonal gammopathies and evaluated their potential role in multiple myeloma and its response to treatment. EXPERIMENTAL DESIGN: We used 16S rRNA sequencing to characterize and compare the gut microbiota of patients with monoclonal gammopathy of undetermined significance (n = 11), smoldering multiple myeloma (n = 9), newly diagnosed multiple myeloma (n = 11), relapsed/refractory multiple myeloma (n = 6), or with complete remission (n = 9). Short-chain fatty acids (SCFA) were quantified in serum and tested in cell lines. Relevant metabolites were validated in a second cohort of 62 patients. RESULTS: Significant differences in alpha- and beta diversity were present across the groups and both were lower in patients with relapse/refractory disease and higher in patients with complete remission after treatment. Differences were found in the abundance of several microbiota taxa across disease progression and in response to treatment. Bacteria involved in SCFA production, including Prevotella, Blautia, Weissella, and Agathobacter, were more represented in the premalignant or complete remission samples, and patients with higher levels of Agathobacter showed better overall survival. Serum levels of butyrate and propionate decreased across disease progression and butyrate was positively associated with a better response. Both metabolites had antiproliferative effects in multiple myeloma cell lines. CONCLUSIONS: We demonstrate that SCFAs metabolites and the gut microbiota associated with their production might have beneficial effects in disease evolution and response to treatment, underscoring its therapeutic potential and value as a predictor.


Assuntos
Microbioma Gastrointestinal , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , RNA Ribossômico 16S/genética , Recidiva Local de Neoplasia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Progressão da Doença , Resposta Patológica Completa
13.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670972

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Sistemas CRISPR-Cas , Camundongos Endogâmicos NOD
14.
Blood Adv ; 7(9): 1885-1898, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36053778

RESUMO

Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of lymphoid malignancies associated with poor prognosis due to ineffective treatment options and high rates of relapse. The success of chimeric antigen receptor T-cell (CART) therapy for certain hematologic malignancies makes it an attractive treatment option for PTCLs. However, shared expression of potential target antigens by both malignant and healthy T cells poses a challenge. Current prospective CART approaches cause a high degree of on-target, off-tumor activity, resulting in fratricide during CART expansion, depletion of healthy T cells in vivo, and immune compromise in the patient. To limit off-tumor targeting, we sought to develop a CART platform specific for a given T-cell receptor vß (TCRvß) family that would endow CAR-modified T cells with the ability to mediate lysis of the clonal malignant population while preserving the majority of healthy T cells. Here, CAR constructs specific for multiple TCRvß family members were designed and validated. Our results demonstrate that TCRvß-family-specific CARTs (TCRvß-CARTs) recognize and kill TCRvß-expressing target cells. This includes specific self-depletion of the targeted cell subpopulation in the CART product and lysis of cell lines engineered to express a target TCRvß family. Furthermore, TCRvß-CARTs eliminated the dominant malignant TCRvß clone in 2 patient samples. Finally, in immunodeficient mice, TCRvß-CARTs eradicated malignant cells in a TCRvß-dependent manner. Importantly, the nontargeted TCRvß families were spared in all cases. Thus, TCRvß-CART therapy provides a potential option for high-precision treatment of PTCL with limited healthy T-cell depletion.


Assuntos
Linfoma de Células T Periférico , Receptores de Antígenos Quiméricos , Camundongos , Animais , Linfócitos T , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T/genética , Linfoma de Células T Periférico/terapia , Células Clonais
15.
Leukemia ; 37(8): 1649-1659, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422594

RESUMO

Despite the approval of several drugs for AML, cytarabine is still widely used as a therapeutic approach. However, 85% of patients show resistance and only 10% overcome the disease. Using RNA-seq and phosphoproteomics, we show that RNA splicing and serine-arginine-rich (SR) proteins phosphorylation were altered during cytarabine resistance. Moreover, phosphorylation of SR proteins at diagnosis were significantly lower in responder than non-responder patients, pointing to their utility to predict response. These changes correlated with altered transcriptomic profiles of SR protein target genes. Notably, splicing inhibitors were therapeutically effective in treating sensitive and resistant AML cells as monotherapy or combination with other approved drugs. H3B-8800 and venetoclax combination showed the best efficacy in vitro, demonstrating synergistic effects in patient samples and no toxicity in healthy hematopoietic progenitors. Our results establish that RNA splicing inhibition, alone or combined with venetoclax, could be useful for the treatment of newly diagnosed or relapsed/refractory AML.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacologia , Citarabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Splicing de RNA , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
16.
J Clin Med ; 13(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202104

RESUMO

INTRODUCTION: Hip fractures are the most common fracture leading to hospitalization and are associated with high costs, mortality rates and functional decline. Although several guidelines exist for preventing new fractures and promoting functional recovery, they tend to focus on osteoporosis treatment and do not take into account the complexity of frailty in older adults and geriatric syndromes, which are important factors in individuals at risk of suffering from frailty fractures. Moreover, most health systems are fragmented and are incapable of providing appropriate management for frail and vulnerable individuals who are at risk of experiencing fragility fractures. Multicomponent interventions and physical exercise using tele-rehabilitation could play a role in the management of hip fracture recovery. However, the effectiveness of exercise prescription and its combination with a comprehensive geriatric assessment (CGA) is still unclear. METHODS: This randomized clinical trial will be conducted at the Hospital Universitario de Navarra (Pamplona, Spain). A total of 174 older adults who have suffered a hip fracture and fulfil the criteria for inclusion will be randomly allocated to either the intervention group or the control group. The intervention group will receive a multicomponent intervention consisting of individualized home-based exercise using the @ctive hip app for three months, followed by nine months of exercise using Vivifrail. Additionally, the intervention group will receive nutrition intervention, osteoporosis treatment, polypharmacy adjustment and evaluation of patient mood, cognitive impairment and fear of falling. The control group will receive standard outpatient care according to local guidelines. This research aims to evaluate the impact of the intervention on primary outcome measures, which include changes in functional status during the study period based on the Short Physical Performance Battery. DISCUSSION: The findings of this study will offer valuable insights into the efficacy of a comprehensive approach that considers the complexity of frailty in older adults and geriatric syndromes, which are important factors in individuals at risk of suffering from frailty fractures. This study's findings will contribute to the creation of more effective strategies tailored to the requirements of these at-risk groups.

17.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432926

RESUMO

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão , Camundongos , Animais , Pulmão/metabolismo , Encéfalo/metabolismo , Lipossomos/metabolismo , Leucócitos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
18.
Cancers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892871

RESUMO

CRISPR is becoming an indispensable tool in biological research, revolutionizing diverse fields of medical research and biotechnology. In the last few years, several CRISPR-based genome-targeting tools have been translated for the study of hematological neoplasms. However, there is a lack of reviews focused on the wide uses of this technology in hematology. Therefore, in this review, we summarize the main CRISPR-based approaches of high throughput screenings applied to this field. Here we explain several libraries and algorithms for analysis of CRISPR screens used in hematology, accompanied by the most relevant databases. Moreover, we focus on (1) the identification of novel modulator genes of drug resistance and efficacy, which could anticipate relapses in patients and (2) new therapeutic targets and synthetic lethal interactions. We also discuss the approaches to uncover novel biomarkers of malignant transformations and immune evasion mechanisms. We explain the current literature in the most common lymphoid and myeloid neoplasms using this tool. Then, we conclude with future directions, highlighting the importance of further gene candidate validation and the integration and harmonization of the data from CRISPR screening approaches.

19.
Cancer Cell ; 40(12): 1470-1487.e7, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513049

RESUMO

Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Vetores Genéticos/genética , Citocinas/metabolismo
20.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577501

RESUMO

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA