Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.335
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554706

RESUMO

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Assuntos
Adenosina Trifosfatases , Replicação do DNA , Instabilidade Genômica , Proteostase , Humanos , Adenosina Trifosfatases/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética
2.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493756

RESUMO

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Assuntos
Feto , Pulmão , Humanos , Diferenciação Celular , Perfilação da Expressão Gênica , Pulmão/citologia , Organogênese , Organoides , Atlas como Assunto , Feto/citologia
3.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593805

RESUMO

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Assuntos
Dano ao DNA , Replicação do DNA , RecQ Helicases , Homeostase do Telômero , Telômero , RecQ Helicases/metabolismo , RecQ Helicases/genética , Humanos , Telômero/metabolismo , Telômero/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Linhagem Celular Tumoral
4.
Cell ; 167(2): 566-580.e19, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716510

RESUMO

Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.


Assuntos
Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Mesencéfalo/embriologia , Células-Tronco Neurais/citologia , Neurogênese , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Técnicas de Reprogramação Celular , Humanos , Aprendizado de Máquina , Mesencéfalo/metabolismo , Camundongos , Neuroglia/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
5.
Physiol Rev ; 103(4): 2877-2925, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290118

RESUMO

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Memória , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem , Hipocampo/fisiologia
6.
Nature ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693260

RESUMO

The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.

7.
Genes Dev ; 36(3-4): 103-105, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193944

RESUMO

Genomic DNA is continuously challenged by endogenous and exogenous sources of damage. The resulting lesions may act as physical blocks to DNA replication, necessitating repair mechanisms to be intrinsically coupled to the DNA replisome machinery. DNA damage tolerance (DDT) is comprised of translesion synthesis (TLS) and template switch (TS) repair processes that allow the replisome to bypass of bulky DNA lesions and complete DNA replication. How the replisome orchestrates which DDT repair mechanism becomes active at replication blocks has remained enigmatic. In this issue of Genes & Development, Dolce and colleagues (pp. 167-179) report that parental histone deposition by replisome components Ctf4 and Dpb3/4 promotes TS while suppressing error-prone TLS. Deletion of Dpb3/4 restored resistance to DNA-damaging agents in ctf4Δ cells at the expense of synergistic increases in mutagenesis due to elevated TLS. These findings illustrate the importance of replisome-directed chromatin maintenance to genome integrity and the response to DNA-damaging anticancer therapeutics.


Assuntos
Dano ao DNA , DNA , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA
8.
Cell ; 159(1): 108-121, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259924

RESUMO

Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, ∼10%-15% employ a recombination-dependent telomere maintenance pathway known as alternative lengthening of telomeres (ALT) that is characterized by multitelomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement and clustering between chromosome termini, resulting in homology-directed telomere synthesis. Damaged telomeres initiate increased random surveillance of nuclear space before displaying rapid directional movement and association with recipient telomeres over micron-range distances. This phenomenon required Rad51 and the Hop2-Mnd1 heterodimer, which are essential for homologous chromosome synapsis during meiosis. These findings implicate a specialized homology searching mechanism in ALT-dependent telomere maintenance and provide a molecular basis underlying the preference for recombination between nonsister telomeres during ALT.


Assuntos
Pareamento Cromossômico , Recombinação Genética , Telômero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Humanos , Proteínas Nucleares/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Transativadores/metabolismo
9.
Cell ; 156(6): 1139-1152, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630718

RESUMO

The brain's response to sensory input is strikingly modulated by behavioral state. Notably, the visual response of mouse primary visual cortex (V1) is enhanced by locomotion, a tractable and accessible example of a time-locked change in cortical state. The neural circuits that transmit behavioral state to sensory cortex to produce this modulation are unknown. In vivo calcium imaging of behaving animals revealed that locomotion activates vasoactive intestinal peptide (VIP)-positive neurons in mouse V1 independent of visual stimulation and largely through nicotinic inputs from basal forebrain. Optogenetic activation of VIP neurons increased V1 visual responses in stationary awake mice, artificially mimicking the effect of locomotion, and photolytic damage of VIP neurons abolished the enhancement of V1 responses by locomotion. These findings establish a cortical circuit for the enhancement of visual response by locomotion and provide a potential common circuit for the modulation of sensory processing by behavioral state.


Assuntos
Neocórtex/metabolismo , Neurônios/metabolismo , Corrida , Vias Visuais , Animais , Feminino , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos , Neocórtex/citologia , Receptores Nicotínicos/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Nature ; 619(7968): 201-208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316655

RESUMO

Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Telômero , Moldes Genéticos , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mamíferos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteômica , Rad51 Recombinase/metabolismo , Telômero/genética , Telômero/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Nature ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057666

RESUMO

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.

12.
Cell ; 153(5): 1094-107, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23647843

RESUMO

Recent studies identified cyclic GMP-AMP (cGAMP) as a metazoan second messenger triggering an interferon response. cGAMP is generated from GTP and ATP by cytoplasmic dsDNA sensor cGAMP synthase (cGAS). We combined structural, chemical, biochemical, and cellular assays to demonstrate that this second messenger contains G(2',5')pA and A(3',5')pG phosphodiester linkages, designated c[G(2',5')pA(3',5')p]. We show that, upon dsDNA binding, cGAS is activated through conformational transitions, resulting in formation of a catalytically competent and accessible nucleotide-binding pocket for generation of c[G(2',5')pA(3',5')p]. We demonstrate that cyclization occurs in a stepwise manner through initial generation of 5'-pppG(2',5')pA prior to cyclization to c[G(2',5')pA(3',5')p], with the latter positioned precisely in the catalytic pocket. Mutants of cGAS dsDNA-binding or catalytic pocket residues exhibit reduced or abrogated activity. Our studies have identified c[G(2',5')pA(3',5')p] as a founding member of a family of metazoan 2',5'-containing cyclic heterodinucleotide second messengers distinct from bacterial 3',5' cyclic dinucleotides.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Sistemas do Segundo Mensageiro , 2',5'-Oligoadenilato Sintetase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Camundongos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Nucleotidiltransferases/metabolismo , Alinhamento de Sequência
13.
Cell ; 154(4): 748-62, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23910378

RESUMO

Binding of dsDNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) triggers formation of the metazoan second messenger c[G(2',5')pA(3',5')p], which binds the signaling protein STING with subsequent activation of the interferon (IFN) pathway. We show that human hSTING(H232) adopts a "closed" conformation upon binding c[G(2',5')pA(3',5')p] and its linkage isomer c[G(2',5')pA(2',5')p], as does mouse mSting(R231) on binding c[G(2',5')pA(3',5')p], c[G(3',5')pA(3',5')p] and the antiviral agent DMXAA, leading to similar "closed" conformations. Comparing hSTING to mSting, 2',5'-linkage-containing cGAMP isomers were more specific triggers of the IFN pathway compared to the all-3',5'-linkage isomer. Guided by structural information, we identified a unique point mutation (S162A) placed within the cyclic-dinucleotide-binding site of hSTING that rendered it sensitive to the otherwise mouse-specific drug DMXAA, a conclusion validated by binding studies. Our structural and functional analysis highlights the unexpected versatility of STING in the recognition of natural and synthetic ligands within a small-molecule pocket created by the dimerization of STING.


Assuntos
Antivirais/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Xantonas/farmacologia , Animais , Cristalografia por Raios X , GMP Cíclico/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Modelos Moleculares , Mutagênese , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
14.
Cell ; 150(3): 455-6, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863001

RESUMO

In this issue, Papouin et al. show that glycine is the endogenous coagonist for extrasynaptic NMDA receptors (NMDARs), unlike at synapses where the coagonist is d-serine. By enzymatically degrading endogenous glycine, they begin to address the enigmatic physiological and pathological roles for extrasynaptic NMDARs.

15.
Nature ; 597(7875): 196-205, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497388

RESUMO

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Assuntos
Movimento Celular , Rastreamento de Células , Células/citologia , Biologia do Desenvolvimento/métodos , Embrião de Mamíferos/citologia , Feto/citologia , Disseminação de Informação , Organogênese , Adulto , Animais , Atlas como Assunto , Técnicas de Cultura de Células , Sobrevivência Celular , Visualização de Dados , Feminino , Humanos , Imageamento Tridimensional , Masculino , Modelos Animais , Organogênese/genética , Organoides/citologia , Células-Tronco/citologia
16.
Nature ; 597(7875): 250-255, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497389

RESUMO

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Assuntos
Envelhecimento , Sistema Nervoso Entérico/citologia , Feto/citologia , Saúde , Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Linfonodos/citologia , Linfonodos/crescimento & desenvolvimento , Adulto , Animais , Criança , Doença de Crohn/patologia , Conjuntos de Dados como Assunto , Sistema Nervoso Entérico/anatomia & histologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Células Epiteliais/citologia , Feminino , Feto/anatomia & histologia , Feto/embriologia , Humanos , Intestinos/embriologia , Intestinos/inervação , Linfonodos/embriologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Receptores de IgG/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 121(26): e2402783121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889145

RESUMO

Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Memória , Receptores de N-Metil-D-Aspartato , Sinapses , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Sinapses/metabolismo , Ratos , Camundongos
18.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917011

RESUMO

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Assuntos
Cricetulus , Fucose , Fucose/metabolismo , Animais , Células CHO , Glicosilação , Humanos , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Fucosiltransferases/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 121(12): e2312252121, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466845

RESUMO

The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.


Assuntos
Carnívoros , Comportamento Social , Animais , Carnívoros/fisiologia
20.
Genes Dev ; 33(3-4): 221-235, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692206

RESUMO

Approximately 15% of cancers use homologous recombination for alternative lengthening of telomeres (ALT). How the initiating genomic lesions invoke homology-directed telomere synthesis remains enigmatic. Here, we show that distinct dependencies exist for telomere synthesis in response to replication stress or DNA double-strand breaks (DSBs). RAD52 deficiency reduced spontaneous telomeric DNA synthesis and replication stress-associated recombination in G2, concomitant with telomere shortening and damage. However, viability and proliferation remained unaffected, suggesting that alternative telomere recombination mechanisms compensate in the absence of RAD52. In agreement, RAD52 was dispensable for DSB-induced telomere synthesis. Moreover, a targeted CRISPR screen revealed that loss of the structure-specific endonuclease scaffold SLX4 reduced the proliferation of RAD52-null ALT cells. While SLX4 was dispensable for RAD52-mediated ALT telomere synthesis in G2, combined SLX4 and RAD52 loss resulted in elevated telomere loss, unresolved telomere recombination intermediates, and mitotic infidelity. These findings establish that RAD52 and SLX4 mediate distinct postreplicative DNA repair processes that maintain ALT telomere stability and cancer cell viability.


Assuntos
Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/metabolismo , Homeostase do Telômero/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Técnicas de Inativação de Genes , Instabilidade Genômica/genética , Células HEK293 , Células HeLa , Humanos , Interfase , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Recombinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA