Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(2): e202303041, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37828571

RESUMO

The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.


Assuntos
Lectinas Tipo C , Manose , Humanos , Concanavalina A/metabolismo , Manose/química , Lectinas Tipo C/metabolismo , Oligossacarídeos/química , Sítios de Ligação , Lectinas de Ligação a Manose/química
2.
Chem Soc Rev ; 52(2): 536-572, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36545903

RESUMO

Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.


Assuntos
Carboidratos , Lectinas , Humanos , Lectinas/metabolismo
3.
J Am Chem Soc ; 145(48): 26009-26015, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37979136

RESUMO

Lectins are capable of reading out the structural information contained in carbohydrates through specific recognition processes. Determining the binding epitope of the sugar is fundamental to understanding this recognition event. Nuclear magnetic resonance (NMR) is a powerful tool to obtain this structural information in solution; however, when the sugar involved is a complex oligosaccharide, such as high mannose, the signal overlap found in the NMR spectra precludes an accurate analysis of the interaction. The introduction of tags into these complex oligosaccharides could overcome these problems and facilitate NMR studies. Here, we show the preparation of the Man9 of high mannose with some fluorine tags and the study of the interaction with its receptor, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). This fluorinated ligand has allowed us to apply heteronuclear two-dimensional (2D) 1H,19F STD-TOCSYreF NMR experiments, using the initial slope approach, which has facilitated the analysis of the Man9/DC-SIGN interaction, unequivocally providing the binding epitope.


Assuntos
Lectinas Tipo C , Manose , Humanos , Manose/química , Lectinas Tipo C/metabolismo , Oligossacarídeos/química , Açúcares , Espectroscopia de Ressonância Magnética , Epitopos , Células Dendríticas
4.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563489

RESUMO

The synthesis of new biocompatible antiviral materials to fight against the development of multidrug resistance is being widely explored. Due to their unique globular structure and excellent properties, [60]fullerene-based antivirals are very promising bioconjugates. In this work, fullerene derivatives with different topologies and number of glycofullerene units were synthesized by using a SPAAC copper free strategy. This procedure allowed the synthesis of compounds 1-3, containing from 20 to 40 mannose units, in a very efficient manner and in short reaction times under MW irradiation. The glycoderivatives were studied in an infection assay by a pseudotyped viral particle with Ebola virus GP1. The results obtained show that these glycofullerene oligomers are efficient inhibitors of EBOV infection with IC50s in the nanomolar range. In particular, compound 3, with four glycofullerene moieties, presents an outstanding relative inhibitory potency (RIP). We propose that this high RIP value stems from the appropriate topological features that efficiently interact with DC-SIGN.


Assuntos
Ebolavirus , Fulerenos , Doença pelo Vírus Ebola , Antivirais/uso terapêutico , Fulerenos/química , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Manose/química
5.
Allergy ; 76(11): 3292-3306, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33559903

RESUMO

Nanotechnology is science, engineering and technology conducted at the nanoscale, which is about 1-100 nm. It has led to the development of nanomaterials, which behave very differently from materials with larger scales and can have a wide range of applications in biomedicine. The physical and chemical properties of materials of such small compounds depend mainly on the size, shape, composition and functionalization of the system. Nanoparticles, carbon nanotubes, liposomes, polymers, dendrimers and nanogels, among others, can be nanoengineeried for controlling all parameters, including their functionalization with ligands, which provide the desired interaction with the immunological system, that is dendritic cell receptors to activate and/or modulate the response, as well as specific IgE, or effector cell receptors. However, undesired issues related to toxicity and hypersensitivity responses can also happen and would need evaluation. There are wide panels of accessible structures, and controlling their physico-chemical properties would permit obtaining safer and more efficient compounds for clinical applications goals, either in diagnosis or treatment. The application of dendrimeric antigens, nanoallergens and nanoparticles in allergy diagnosis is very promising since it can improve sensitivity by increasing specific IgE binding, mimicking carrier proteins or enhancing signal detection. Additionally, in the case of immunotherapy, glycodendrimers, liposomes, polymers and nanoparticles have shown interest, behaving as platforms of allergenic structures, adjuvants or protectors of allergen from degradation or having a depot capacity. Taken together, the application of nanotechnology to allergy shows promising facts facing important goals related to the improvement of diagnosis as well as specific immunotherapy.


Assuntos
Hipersensibilidade , Nanoestruturas , Nanotubos de Carbono , Alérgenos , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Nanotecnologia
6.
Org Biomol Chem ; 19(34): 7357-7362, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34387640

RESUMO

Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.


Assuntos
Lectinas
7.
Angew Chem Int Ed Engl ; 60(29): 16109-16118, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984168

RESUMO

Suitably engineered molecular systems exhibiting triplet excited states with very long lifetimes are important for high-end applications in nonlinear optics, photocatalysis, or biomedicine. We report the finding of an ultra-long-lived triplet state with a mean lifetime of 93 ms in an aqueous phase at room temperature, measured for a globular tridecafullerene with a highly compact glycodendrimeric structure. A series of three tridecafullerenes bearing different glycodendrons and spacers to the C60 units have been synthesized and characterized. UV/Vis spectra and DLS experiments confirm their aggregation in water. Steady-state and time-resolved fluorescence experiments suggest a different degree of inner solvation of the multifullerenes depending on their molecular design. Efficient quenching of the triplet states by O2 but not by waterborne azide anions has been observed. Molecular modelling reveals dissimilar access of the aqueous phase to the internal structure of the tridecafullerenes, differently shielded by the glycodendrimeric shell.

8.
Mol Pharm ; 17(3): 827-836, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31990560

RESUMO

Olive pollen is one of the most important causes of respiratory allergy, with Ole e 1 being the most clinically relevant sensitizing allergen. Peptide-based vaccines represent promising therapeutic approaches, but the use of adjuvants is required to strengthen the weak immunogenicity of small peptides. We propose the use of dendrimeric scaffolds conjugated to the T cell immunodominant epitope of Ole e 1 (OE109-130) for the development of novel vaccines against olive pollen allergy. Four dendrimeric scaffolds containing an ester/ether with nine mannoses, an ester succinimidyl linker with nine N-acetyl-glucosamine units or nine ethylene glycol units conjugated to OE109-130 peptide were designed, and their cytotoxicity, internalization pattern, and immunomodulatory properties were analyzed in vitro. None of the dendrimers exhibited cytotoxicity in humanized rat basophil (RBL-2H3), human bronchial epithelial Calu-3, and human mast LAD2 cell lines. Confocal images indicated that mannosylated glycodendropeptides exhibited lower colocalization with a lysosomal marker. Moreover, mannosylated glycodendropeptides showed higher transport tendency through the epithelial barrier formed by Calu-3 cells cultured at the air-liquid interface. Finally, mannosylated glycodendropeptides promoted Treg and IL10+Treg proliferation and IL-10 secretion by peripheral blood mononuclear cells from allergic patients. Mannosylated dendrimers conjugated with OE109-130 peptide from Ole e 1 have been identified as suitable candidates for the development of novel vaccines of olive pollen allergy.


Assuntos
Antígenos de Plantas/química , Dendrímeros/química , Manose/imunologia , Olea/química , Olea/imunologia , Peptídeos/imunologia , Proteínas de Plantas/química , Pólen/imunologia , Rinite Alérgica Sazonal/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/química , Animais , Antígenos de Plantas/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Citocinas/análise , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Imunogenicidade da Vacina , Manose/química , Peptídeos/química , Proteínas de Plantas/imunologia , Ratos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Rinite Alérgica Sazonal/sangue , Rinite Alérgica Sazonal/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Biomacromolecules ; 21(7): 2726-2734, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32525659

RESUMO

Chondroitin sulfate type-E (CS-E) is a sulfated polysaccharide that shows several interesting biological activities, such as modulation of the neuronal growth factor signaling and its interaction with langerin, a C-type lectin with a crucial role in the immunological system. However, applications of CS-E are hampered by the typical heterogeneous structure of the natural polysaccharide. Well-defined, homogeneous CS-E analogues are highly demanded. Here, we report the synthesis of monodispersed, structurally well-defined second-generation glycodendrimers displaying up to 18 CS-E disaccharide units. These complex multivalent systems have a molecular weight and a number of disaccharide repeating units comparable with those of the natural polysaccharides. In addition, surface plasmon resonance experiments revealed a calcium-independent interaction between these glycodendrimers and langerin, in the micromolar range, highlighting the utility of these compounds as CS-E mimetics.


Assuntos
Sulfatos de Condroitina , Dendrímeros , Dissacarídeos , Ligantes , Polissacarídeos
10.
Org Biomol Chem ; 18(31): 6086-6094, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32729597

RESUMO

High-mannose (Man9GlcNAc2) is the main carbohydrate unit present in viral envelope glycoproteins such as gp120 of HIV and the GP1 of Ebola virus. This oligosaccharide comprises the Man9 epitope conjugated to two terminal N-acetylglucosamines by otherwise rarely-encountered ß-mannose glycosidic bond. Formation of this challenging linkage is the bottleneck of the few synthetic approaches described to prepare high mannose. Herein, we report the synthesis of the Man9 epitope with both alpha and beta configurations at the reducing end, and subsequent evaluation of the impact of this configuration on binding to natural receptor of high-mannose, DC-SIGN. Using fluorescence polarization assays, we demonstrate that both anomers bind to DC-SIGN with comparable affinity. These relevant results therefore indicate that the more synthetically-accesible Man9 alpha epitope may be deployed as ligand for DC-SIGN in both in vitro and in vivo biological assays.


Assuntos
Moléculas de Adesão Celular/química , Epitopos/química , Lectinas Tipo C/química , Mananas/síntese química , Receptores de Superfície Celular/química , Configuração de Carboidratos , Polarização de Fluorescência , Humanos , Mananas/química
11.
J Fish Biol ; 96(4): 956-967, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048294

RESUMO

This study reports the phenotypic and genetic differences between individuals of puyen Galaxias maculatus from two sites in the same river basin in Tierra del Fuego National Park, southern South America. Individuals from the two sampling sites presented morphometric and genetic differences. The morphometric differences indicated that individuals from Laguna Negra (LN) were short and more robust and had large eyes, whereas those from Arroyo Negro (AN) were thin and elongated and had small eyes. Genetic differences showed that AN individuals had a greater genetic structuration and an older demographic history than LN individuals. The results of this study affirmed that the individuals from the two sampling sites belong to different populations with a high degree of isolation. The demographic history could indicate that the individuals of G. maculatus which migrated to northern areas during the last glaciation settled in the Beagle Channel after its formation. The LN population could have originated after the retreat of the glaciers, migrating from AN.


Assuntos
Osmeriformes/classificação , Osmeriformes/genética , Animais , Osmeriformes/anatomia & histologia , América do Sul , Especificidade da Espécie
12.
J Am Chem Soc ; 141(38): 15403-15412, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31469952

RESUMO

After the last epidemic of the Zika virus (ZIKV) in Brazil that peaked in 2016, growing evidence has been demonstrated of the link between this teratogenic flavivirus and microcephaly cases. However, no vaccine or antiviral drug has been approved yet. ZIKV and Dengue viruses (DENV) entry to the host cell takes place through several receptors, including dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), so that the blockade of this receptor through multivalent glycoconjugates supposes a promising biological target to inhibit the infection process. In order to get enhanced multivalency in biocompatible systems, tridecafullerenes appended with up to 360 1,2-mannobiosides have been synthesized using a strain-promoted cycloaddition of azides to alkynes (SPAAC) strategy. These systems have been tested against ZIKV and DENV infection, showing an outstanding activity in the picomolar range.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Dissacarídeos/farmacologia , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Reação de Cicloadição , Dissacarídeos/química , Fulerenos/química , Estrutura Molecular
13.
J Am Chem Soc ; 140(31): 9891-9898, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30014698

RESUMO

SWCNTs, MWCNTs, and SWCNHs have been employed as virus-mimicking nanocarbon platforms for the multivalent presentation of carbohydrates in an artificial Ebola virus infection model assay. These carbon nanoforms have been chemically modified by the covalent attachment of glycodendrons and glycofullerenes using the CuAAC "click chemistry" approach. This modification dramatically increases the water solubility of these structurally different nanocarbons. Their efficiency in blocking DC-SIGN-mediated viral infection by an artificial Ebola virus has been tested in a cellular experimental assay, finding that glycoconjugates based on MWCNTs functionalized with glycofullerenes are potent inhibitors of viral infection.


Assuntos
Antivirais/uso terapêutico , Carbono/química , Glicoconjugados/química , Glicoconjugados/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Nanoestruturas/química , Química Click , Microscopia Eletrônica de Transmissão , Análise Espectral Raman
14.
J Org Chem ; 83(4): 1727-1736, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29310437

RESUMO

The synthesis of multivalent systems based on hexakis-adducts of [60]fullerene employing a biocompatible copper-free click chemistry strategy has been accomplished. A symmetric hexakis-adduct of fullerene bearing 12 maleimide units (3) is reported, and it has been employed to carry out the thiol-maleimide Michael addition. To achieve orthogonal click addition, an asymmetric derivative bearing one maleimide and 10 cyclooctynes has been synthesized. The sequential and one-pot transformations of the two clickable groups have been explored, finding the best results in the case of the one-pot experiment. This route has been used to obtain a biocompatible hexakis-adduct appended with two different biomolecules, carbohydrates, and amino acids.

15.
J Am Chem Soc ; 139(17): 6018-6025, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28394600

RESUMO

The infection of humans by lethal pathogens such as Ebola and other related viruses has not been properly addressed so far. In this context, a relevant question arises: What can chemistry do in the search for new strategies and approaches to solve this emergent problem? Although initially a variety of known chemical compounds-for other purposes-proved disappointing in tests against Ebola virus (EBOV) infection, more recently, specific molecules have been prepared. In this Perspective, we present new approaches directed at the design of efficient entry inhibitors to minimize the development of resistance by viral mutations. In particular, we focus on dendrimers as well as fullerene C60-with a unique symmetrical and 3D globular structure-as biocompatible carbon platforms for the multivalent presentation of carbohydrates. The antiviral activity of these compounds in an Ebola pseudotyped infection model was in the low micromolar range for fullerenes with 12 and 36 mannoses. However, new tridecafullerenes-in which the central alkyne scaffold of [60]fullerene is connected to 12 sugar-containing [60]fullerene units (total 120 mannoses)-exhibit an outstanding antiviral activity with IC50 in the sub-nanomolar range! The multivalent presentation of specific carbohydrates by using 3D fullerenes as controlled biocompatible carbon scaffolds represents a real advance, being currently the most efficient molecules in vitro against EBOV infection. However, additional studies are needed to determine the optimized fullerene-based leads for practical applications.


Assuntos
Antivirais/farmacologia , Dendrímeros/farmacologia , Ebolavirus/efeitos dos fármacos , Fulerenos/farmacologia , Doença pelo Vírus Ebola/tratamento farmacológico , Nanoestruturas/química , Antivirais/química , Dendrímeros/química , Ebolavirus/genética , Fulerenos/química , Glicosilação , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mutação
16.
Chemistry ; 23(62): 15790-15794, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28851127

RESUMO

Central scaffold topology and carbohydrate density are important features in determining the binding mechanism and potency of synthetic multivalent of poly- versus monodisperse carbohydrate systems against a model plant toxin (Ricinus communis agglutinin (RCA120 )). Lower densities of protein receptors favour the use of heterogeneous, polydisperse glycoconjugate presentations, as determined by surface plasmon resonance and dynamic light scattering.


Assuntos
Glicoconjugados/metabolismo , Lectinas/metabolismo , Lectinas de Plantas/metabolismo , Polímeros/química , Dendrímeros/química , Difusão Dinâmica da Luz , Glicoconjugados/química , Lectinas/química , Lectinas de Plantas/química , Ligação Proteica , Ressonância de Plasmônio de Superfície
17.
Chemistry ; 23(47): 11338-11345, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28621483

RESUMO

Chondroitin sulfate (CS) is a member of the glycosaminoglycan (GAG) family, a class of polysaccharides implicated in relevant biological functions. The structural complexity of these carbohydrates demands the development of simple glycomimetics as useful tools to study the biological processes in which GAGs are involved. In this work we described the synthesis of the disaccharide unit of the CS-E (GlcA-GalNAc(4,6-di-OSO3 )), in a multivalent presentation. Using a fluorescence polarization competition assay we have demonstrated that a hexavalent dendrimer of this disaccharide interact with midkine, in the low micromolar range. This result highlights the potency of these disaccharide-displaying multivalent systems as interesting mimetics of longer and synthetically more complex GAG oligosaccharides.


Assuntos
Sulfatos de Condroitina/química , Citocinas/metabolismo , Dendrímeros/química , Reação de Cicloadição , Citocinas/química , Dendrímeros/síntese química , Dendrímeros/metabolismo , Polarização de Fluorescência , Glicosaminoglicanos/química , Humanos , Concentração Inibidora 50 , Midkina , Ligação Proteica
18.
Org Biomol Chem ; 15(18): 3995-4004, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28443908

RESUMO

The C-type lectin DC-SIGN expressed on immature dendritic cells is a promising target for antiviral drug development. Previously, we have demonstrated that mono- and divalent C-glycosides based on d-manno and l-fuco configurations are promising DC-SIGN ligands. Here, we described the convergent synthesis of C-glycoside dendrimers decorated with 4, 6, 9, and 12 α-l-fucopyranosyl units and with 9 and 12 α-d-mannopyranosyl units. Their affinity against DC-SIGN was assessed by surface plasmon resonance (SPR) assays. For comparison, parent O-glycosidic dendrimers were synthesized and tested, as well. A clear increase of both affinity and multivalency effect was observed for C-glycomimetics of both types (mannose and fucose). However, when dodecavalent C-glycosidic dendrimers were compared, there was no difference in affinity regarding the sugar unit (l-fuco, IC50 17 µM; d-manno, IC50 12 µM). For the rest of glycodendrimers with l-fucose or d-mannose attached by the O- or C-glycosidic linkage, C-glycosidic dendrimers were significantly more active. These results show that in addition to the expected physiological stability, the biological activity of C-glycoside mimetics is higher in comparison to the corresponding O-glycosides and therefore these glycomimetic multivalent systems represent potentially promising candidates for targeting DC-SIGN.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Moléculas de Adesão Celular/antagonistas & inibidores , Fucose/química , Lectinas Tipo C/antagonistas & inibidores , Manose/química , Receptores de Superfície Celular/antagonistas & inibidores , Concentração Inibidora 50
19.
Org Biomol Chem ; 15(42): 8877-8882, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29051951

RESUMO

The high-mannose oligosaccharide (or its corresponding Man9 epitope) is the most abundant structure present in pathogen envelope glycoproteins. These glycans play a key role in the pathogenesis of several pathogens and also in the communication with the immune system. Understanding the mechanism of action of these glycans requires the access to pure and chemically well-defined structures in reasonable amounts. The synthesis of these complex branched oligosaccharides is not trivial and few syntheses are reported in the literature with several synthetic and purification steps and low overall yields. In this work, we described a very efficient synthetic alternative to access this relevant Man9 epitope in a very straightforward manner.


Assuntos
Epitopos/química , Manose/química , Oligossacarídeos/síntese química , Oligossacarídeos/química
20.
Org Biomol Chem ; 14(10): 2873-82, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26864274

RESUMO

α(1,2)mannobiosides with different substituents at the reducing end have been synthesized by a common strategy using benzoyls as the permanent protecting groups and an acetyl as the orthogonal protecting group at position C2 of the glycosyl acceptor. The new synthetic strategy has been performed remarkably reducing the number of purification steps, the time of synthesis (less than 72 hours) and improving the overall yield at least three times with respect to the best procedure described in the literature at the moment. Additionally, this protecting group strategy is compatible with the presence of azido groups and the use of Cu catalyzed azide alkyne cycloaddition (CuAAC) also called "click chemistry" for conjugating the α(1-2)mannobiosides to different scaffolds for the preparation of mannosyl multivalent systems.


Assuntos
Manose/síntese química , Oligossacarídeos/síntese química , Química Click
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA