Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946425

RESUMO

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.


Assuntos
MicroRNAs , Valva Tricúspide , Matriz Extracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Valva Mitral , Valva Tricúspide/anormalidades
2.
Dev Biol ; 452(1): 1-7, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042497

RESUMO

Cardiomyocytes undergo dramatic changes during the fetal to neonatal transition stage to adapt to the new environment. The molecular and genetic mechanisms regulating these changes remain elusive. In this study, we showed Sema6D as a novel signaling molecule regulating perinatal cardiomyocyte proliferation and maturation. SEMA6D is a member of the Semaphorin family of signaling molecules. To reveal its function during cardiogenesis, we specifically inactivated Sema6D in embryonic cardiomyocytes using a conditional gene deletion approach. All mutant animals showed hypoplastic myocardial walls in neonatal hearts due to reduced cell proliferation. We further revealed that expression of MYCN and its downstream cell cycle regulators is impaired in late fetal hearts in which Sema6D is deleted, suggesting that SEMA6D acts through MYCN to regulate cardiomyocyte proliferation. In early postnatal mutant hearts, expression of adult forms of sarcomeric proteins is increased, while expression of embryonic forms is decreased. These data collectively suggest that SEMA6D is required to maintain late fetal/early neonatal cardiomyocytes at a proliferative and less mature status. Deletion of Sema6D in cardiomyocytes led to reduced proliferation and accelerated maturation. We further examined the consequence of these defects through echocardiographic analysis. Embryonic heart deletion of Sema6D significantly impaired the cardiac contraction of male adult hearts, while having a minor effect on female mutant hearts, suggesting that the effect of Sema6D-deletion in adult hearts is sex dependent.


Assuntos
Proliferação de Células , Embrião de Mamíferos/embriologia , Coração/embriologia , Miócitos Cardíacos/metabolismo , Organogênese , Semaforinas/metabolismo , Animais , Ecocardiografia , Embrião de Mamíferos/citologia , Deleção de Genes , Coração/diagnóstico por imagem , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/citologia , Semaforinas/genética , Desenvolvimento Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA