Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genet Sel Evol ; 55(1): 58, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550635

RESUMO

BACKGROUND: Maternal effects influence juvenile traits such as body weight and early growth in broilers. Ignoring significant maternal effects leads to reduced accuracy and inflated predicted breeding values. Including genetic and environmental direct-maternal covariances into prediction models in broilers can increase the accuracy and limit inflation of predicted breeding values better than simply adding maternal effects to the model. To test this hypothesis, we applied a model accounting for direct-maternal genetic covariance and direct-maternal environmental covariance to estimate breeding values. RESULTS: This model, and simplified versions of it, were tested using simulated broiler populations and then was applied to a large broiler population for validation. The real population analyzed consisted of a commercial line of broilers, for which body weight at a common slaughter age was recorded for 41 selection rounds. The direct-maternal genetic covariance was negative whereas the direct-maternal environmental covariance was positive. Simulated populations were created to mimic the real population. The predictive ability of the models was assessed by cross-validation, where the validation birds were all from the last five selection rounds. Accuracy of prediction was defined as the correlation between the predicted breeding values estimated without the phenotypic records of the validation population and a predictor. The predictors were the breeding values estimated using all the phenotypic information and the phenotypes corrected for the fixed effects, and for the simulated data, the true breeding values. In the real data, adding the environmental covariance, with or without also adding the genetic covariance, increased the accuracy, or reduced deflation of breeding values compared with a model not including dam-offspring covariance. Nevertheless, in the simulated data, reduction in the inflation of breeding values was possible and was associated with a gain in accuracy of up to 6% compared with a model not including both forms of direct-maternal covariance. CONCLUSIONS: In this paper, we propose a simple approach to estimate the environmental direct-maternal covariance using standard software for REML analysis. The genetic covariance between dam and offspring was negative whereas the corresponding environmental covariance was positive. Considering both covariances in models for genetic evaluation increased the accuracy of predicted breeding values.


Assuntos
Galinhas , Modelos Genéticos , Animais , Galinhas/genética , Peso Corporal/genética , Fenótipo
2.
J Anim Breed Genet ; 138(5): 528-540, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33774870

RESUMO

BLUP (best linear unbiased prediction) is the standard for predicting breeding values, where different assumptions can be made on variance-covariance structure, which may influence predictive ability. Herein, we compare accuracy of prediction of four derived-BLUP models: (a) a pedigree relationship matrix (PBLUP), (b) a genomic relationship matrix (GBLUP), (c) a weighted genomic relationship matrix (WGBLUP) and (d) a relationship matrix based on genomic features that consisted of only a subset of SNP selected on a priori information (GFBLUP). We phenotyped a commercial population of broilers for body weight (BW) in five successive weeks and genotyped them using a 50k SNP array. We compared predictive ability of univariate models using conservative cross-validation method, where each full-sib group was divided into two folds. Results from cross-validation showed, with WGBLUP model, a gain in accuracy from 2% to 7% compared with GBLUP model. Splitting the additive genetic matrix into two matrices, based on significance level of SNP (Gf : estimated with only set of SNP selected on significance level, Gr : estimated with the remaining SNP), led to a gain in accuracy from 1% to 70%, depending on the proportion of SNP used to define Gf . Thus, information from GWAS in models improves predictive ability of breeding values for BW in broilers. Increasing the power of detection of SNP effects, by acquiring more data or improving methods for GWAS, will help improve predictive ability.


Assuntos
Peso Corporal , Galinhas , Polimorfismo de Nucleotídeo Único , Animais , Peso Corporal/genética , Galinhas/genética , Genoma , Genótipo , Modelos Genéticos , Linhagem , Fenótipo
3.
Genet Sel Evol ; 51(1): 50, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533614

RESUMO

BACKGROUND: The increase in accuracy of prediction by using genomic information has been well-documented. However, benefits of the use of genomic information and methodology for genetic evaluations are missing when genotype-by-environment interactions (G × E) exist between bio-secure breeding (B) environments and commercial production (C) environments. In this study, we explored (1) G × E interactions for broiler body weight (BW) at weeks 5 and 6, and (2) the benefits of using genomic information for prediction of BW traits when selection candidates were raised and tested in a B environment and close relatives were tested in a C environment. METHODS: A pedigree-based best linear unbiased prediction (BLUP) multivariate model was used to estimate variance components and predict breeding values (EBV) of BW traits at weeks 5 and 6 measured in B and C environments. A single-step genomic BLUP (ssGBLUP) model that combined pedigree and genomic information was used to predict EBV. Cross-validations were based on correlation, mean difference and regression slope statistics for EBV that were estimated from full and reduced datasets. These statistics are indicators of population accuracy, bias and dispersion of prediction for EBV of traits measured in B and C environments. Validation animals were genotyped and non-genotyped birds in the B environment only. RESULTS: Several indications of G × E interactions due to environmental differences were found for BW traits including significant re-ranking, heterogeneous variances and different heritabilities for BW measured in environments B and C. The genetic correlations between BW traits measured in environments B and C ranged from 0.48 to 0.54. The use of combined pedigree and genomic information increased population accuracy of EBV, and reduced bias of EBV prediction for genotyped birds compared to the use of pedigree information only. A slight increase in accuracy of EBV was also observed for non-genotyped birds, but the bias of EBV prediction increased for non-genotyped birds. CONCLUSIONS: The G × E interaction was strong for BW traits of broilers measured in environments B and C. The use of combined pedigree and genomic information increased population accuracy of EBV substantially for genotyped birds in the B environment compared to the use of pedigree information only.


Assuntos
Peso Corporal/genética , Galinhas/genética , Interação Gene-Ambiente , Modelos Genéticos , Animais , Cruzamento , Galinhas/crescimento & desenvolvimento , Feminino , Genômica , Masculino , Modelos Estatísticos
4.
Genet Sel Evol ; 51(1): 68, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752665

RESUMO

After publication of this work [1], we noticed that there was an error: the formula to calculate the standard error of the estimated correlation.

5.
Genet Sel Evol ; 51(1): 53, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547801

RESUMO

BACKGROUND: The objectives of this study were to (1) simultaneously estimate genetic parameters for BW, feed intake (FI), and body weight gain (Gain) during a FI test in broiler chickens using multi-trait Bayesian analysis; (2) derive phenotypic and genetic residual feed intake (RFI) and estimate genetic parameters of the resulting traits; and (3) compute a Bayesian measure of direct and correlated superiority of a group selected on phenotypic or genetic residual feed intake. A total of 56,649 male and female broiler chickens were measured at one of two ages ([Formula: see text] or [Formula: see text] days). BW, FI, and Gain of males and females at the two ages were considered as separate traits, resulting in a 12-trait model. Phenotypic RFI ([Formula: see text]) and genetic RFI ([Formula: see text]) were estimated from a conditional distribution of FI given BW and Gain using partial phenotypic and partial genetic regression coefficients, respectively. RESULTS: Posterior means of heritability for BW, FI and Gain were moderately high and estimates were significantly different between males and females at the same age for all traits. In addition, the genetic correlations between male and female traits at the same age were significantly different from 1, which suggests a sex-by-genotype interaction. Genetic correlations between [Formula: see text] and [Formula: see text] were significantly different from 1 at an older age but not at a younger age. CONCLUSIONS: The results of the multivariate Bayesian analyses in this study showed that genetic evaluation for production and feed efficiency traits should take sex and age differences into account to increase accuracy of selection and genetic gain. Moreover, for communicating with stakeholders, it is easier to explain results from selection on [Formula: see text] than selection on [Formula: see text], since [Formula: see text] is genetically independent of production traits and it explains the efficiency of birds in nutrient utilization independently of energy requirements for production and maintenance.


Assuntos
Peso Corporal/genética , Galinhas/genética , Ração Animal , Animais , Teorema de Bayes , Galinhas/crescimento & desenvolvimento , Ingestão de Alimentos , Feminino , Masculino
6.
Genet Sel Evol ; 47: 83, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26482360

RESUMO

BACKGROUND: The genetic architecture of egg production and egg quality traits, i.e. the quantitative trait loci (QTL) that influence these traits, is still poorly known. To date, 33 studies have focused on the detection of QTL for laying traits in chickens, but less than 10 genes have been identified. The availability of a high-density SNP (single nucleotide polymorphism) chicken array developed by Affymetrix, i.e. the 600K Affymetrix(®) Axiom(®) HD genotyping array offers the possibility to narrow down the localization of previously detected QTL and to detect new QTL. This high-density array is also anticipated to take research beyond the classical hypothesis of additivity of QTL effects or of QTL and environmental effects. The aim of our study was to search for QTL that influence laying traits using the 600K SNP chip and to investigate whether the effects of these QTL differed between diets and age at egg collection. RESULTS: One hundred and thirty-one QTL were detected for 16 laying traits and were spread across all marked chromosomes, except chromosomes 16 and 25. The percentage of variance explained by a QTL varied from 2 to 10 % for the various traits, depending on diet and age at egg collection. Chromosomes 3, 9, 10 and Z were overrepresented, with more than eight QTL on each one. Among the 131 QTL, 60 had a significantly different effect, depending on diet or age at egg collection. For egg production traits, when the QTL × environment interaction was significant, numerous inversions of sign of the SNP effects were observed, whereas for egg quality traits, the QTL × environment interaction was mostly due to a difference of magnitude of the SNP effects. CONCLUSIONS: Our results show that numerous QTL influence egg production and egg quality traits and that the genomic regions, which are involved in shaping the ability of layer chickens to adapt to their environment for egg production, vary depending on the environmental conditions. The next question will be to address what the impact of these genotype × environment interactions is on selection.


Assuntos
Galinhas/fisiologia , Oviparidade , Locos de Características Quantitativas , Animais , Galinhas/genética , Mapeamento Cromossômico , Dieta , Feminino , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
7.
Genet Sel Evol ; 46: 14, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24552175

RESUMO

BACKGROUND: Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied. RESULTS: Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL. CONCLUSIONS: The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between different models and marker densities.


Assuntos
Galinhas/genética , Galinhas/parasitologia , Coccidiose/veterinária , Eimeria tenella/isolamento & purificação , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/parasitologia , Animais , Coccidiose/genética , Cruzamentos Genéticos , Variação Genética , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Neural Dev ; 8: 25, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24360028

RESUMO

BACKGROUND: The generation of diverse neuronal types and subtypes from multipotent progenitors during development is crucial for assembling functional neural circuits in the adult central nervous system. It is well known that the Notch signalling pathway through the inhibition of proneural genes is a key regulator of neurogenesis in the vertebrate central nervous system. However, the role of Notch during hypothalamus formation along with its downstream effectors remains poorly defined. RESULTS: Here, we have transiently blocked Notch activity in chick embryos and used global gene expression analysis to provide evidence that Notch signalling modulates the generation of neurons in the early developing hypothalamus by lateral inhibition. Most importantly, we have taken advantage of this model to identify novel targets of Notch signalling, such as Tagln3 and Chga, which were expressed in hypothalamic neuronal nuclei. CONCLUSIONS: These data give essential advances into the early generation of neurons in the hypothalamus. We demonstrate that inhibition of Notch signalling during early development of the hypothalamus enhances expression of several new markers. These genes must be considered as important new targets of the Notch/proneural network.


Assuntos
Hipotálamo/embriologia , Hipotálamo/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/genética , Regulação para Cima , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Embrião de Galinha , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Hipotálamo/efeitos dos fármacos , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA