Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 227: 112924, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34715499

RESUMO

Platinum (Pt) is considered an emerging environmental micro-contaminant due to its increasing use in anthropogenic activities during the past decades. However, there are still important gaps in the understanding of its biogeochemical behavior in the aquatic environment - e.g. its speciation, reactivity and fate - mainly as a result of the analytical challenge of the determination of its typical ultra-trace environmental concentrations. Also, Pt is a kinetically-hindered metal displaying slow reaction kinetics, which has important implications regarding eco-toxicological studies. That is, investigation of its toxicity under laboratory-controlled conditions may therefore require ensuring that equilibrium speciation conditions are reached before starting the experiments. In order to shed further light on this issue, in this study we have monitored the speciation changes during aging of the Pt(IV) spikes in controlled media (seawater) using an UV-Vis spectrophotometry. Platinum toxicity to the green microalgae Dunaliella salina was then compared, using standardized tests, with fresh and aged Pt(IV) spikes at the mg L-1 concentration range. Following 96-hour exposure, ecotoxicological assays consisting in spectrometric measurements of chlorophyll-a concentrations and Effective Concentrations (EC) of Pt resulting in the inhibition of 10% and 50% of algae growth rate were calculated (EC10 and EC50, respectively). Daily monitoring of Pt speciation reflected the transition from PtCl62- (spike) to hydrolyzed species, probably in the form [PtCl3-n(OH)3+n]2-, n = 0-3. Exposure experiments showed that after a short period of aging (10 days), Pt(IV) toxicity increased one order of magnitude compared to freshly spiked media. These results confirm the relevance of considering spike aging to ensure that speciation equilibrium conditions are attained in order to produce environmental realistic eco-toxicological data.


Assuntos
Microalgas , Poluentes Químicos da Água , Ecotoxicologia , Platina/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
J Environ Manage ; 291: 112726, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962285

RESUMO

Ultramafic sediments exhibit high levels of geogenically-derived and potentially toxic metals, with Ni, Cr and Co often exceeding benchmark values. As yet, a holistic understanding of the bioavailability, mobility, potential ecotoxicity and trophic transfer of trace elements in both benthic and pelagic food chains in aquatic ultramafic environments (UME) is lacking. We investigated potential environmental health issues due to metal contamination by jointly implementing chemical, ecological and toxicological tools, along the Albanian shoreline of Lake Ohrid. It is an aquatic system of worldwide importance, representative of temperate UME with a legacy of Ni and Cr contamination from mining activities. Levels of Ni, Cr, Cd, Cu, Co, Fe, Mn and Zn were determined in waters, sediments and native biota. The potential environmental mobility of sediment-bound elements was further assessed using CaCl2, EDTA and acetic acid extractions. Whole-sediment ecotoxicity tests were also carried out using ostracods and chironomids, according to standardized procedures. Despite Ni and Cr concentrations above the sediment quality guidelines for probable effect levels, we did not observe ecotoxic effects in laboratory tests. However, these elements were bioavailable to native organisms under field conditions, especially to benthic primary producers in direct contact with sediments (up to 139 mg Cr kg-1 and 785 mg Ni kg-1). Although biomagnification was not observed, further investigations of metal translocation, metabolism and elemental trophic transfer along benthic food webs appears to be a general research priority in the management of temperate UME. The present study shows that proper management of temperate UME requires not only the integration of data from different lines of evidence, but also laboratory vs. field approaches to understand the subtler, long-term effects of increased elemental body burdens in native organisms.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Albânia , Biota , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Metais Pesados/análise , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 51(21): 12756-12763, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29017317

RESUMO

Here we use two enriched stable isotopes, 68Znen and 64Znen (>99%), to prepare 68ZnO nanoparticles (NPs) and soluble 64ZnCl2. The standard LUFA 2.2 test soil was dosed with 68ZnO NPs and soluble 64ZnCl2 to 5 mg kg-1 each, plus between 0 and 95 mg kg-1 of soluble ZnCl2 with a natural isotope composition. After 0, 1, 3, 6, and 12 months of soil incubation, earthworms (Eisenia andrei) were introduced for 72 h exposures. Analyses of soils, pore waters, and earthworm tissues using multiple collector inductively coupled plasma mass spectrometry allowed the simultaneous measurement of the diagnostic 68Zn/66Zn, 64Zn/66Zn, and 68Zn/64Zn ratios, from which the three different isotopic forms of Zn were quantified. Eisenia andrei was able to regulate Zn body concentrations with no difference observed between the different total dosing concentrations. The accumulation of labeled Zn by the earthworms showed a direct relationship with the proportion of labeled to total Zn in the pore water, which increased with longer soil incubation times and decreasing soil pH. The 68Znen/64Znen ratios determined for earthworms (1.09 ± 0.04), soils (1.09 ± 0.02), and pore waters (1.08 ± 0.02) indicate indistinguishable environmental distribution and uptake of the Zn forms, most likely due to rapid dissolution of the ZnO NPs.


Assuntos
Disponibilidade Biológica , Nanopartículas , Óxido de Zinco , Animais , Oligoquetos , Solo , Poluentes do Solo , Zinco , Isótopos de Zinco
4.
Sci Total Environ ; 945: 174030, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885698

RESUMO

Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.

5.
Toxics ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37368636

RESUMO

Soil is an essential natural resource because of the ecosystem services it carries out in the terrestrial ecosystem: the provision of food, fibre and fuel; habitats for organisms; nutrient cycling; climate regulation and carbon sequestration; water purification and soil contaminant reductions; and others [...].

6.
Environ Pollut ; 316(Pt 1): 120517, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309302

RESUMO

The toxic effect of waterborne nanoplastics is a manifestation of bio-nano interfacial interactions. Although nanoplastics with different physicochemical characteristics are known to exhibit distinct toxicities, it remains poorly understood how the properties of nanoplastics affect the bio-nano interface interactions. Here, polystyrene nanoparticles (PSNPs) varying in size (50, 300, and 500 nm) and surface charge (negative and positive charge) were employed to explore the interplay between PSNPs and algal cells (Chlamydomonas reinhardtii), with special focus on the heteroaggregation of PSNPs and microalgae, PSNPs cellular internalization, and cellular physiological responses. Results showed that large-sized PSNPs (300 and 500 nm) caused apparent toxicity to C. reinhardtii, mainly due to light blockage resulting from the PSNPs-microalgae heteroaggregation and the shading effect of PSNPs, which was independent of PSNPs concentrations. However, the toxicity of small-sized PSNPs (50 nm) was controlled by both particle surface charge and particle concentration. The positively charged PS-NH2 was more readily heteroaggregated with microalgae than the negatively charged PS-COOH, leading to photosynthesis damage-induced toxicity. Increasing the concentration of small-sized PSNPs stimulated the secretion of extracellular polymeric substances, allowing more PSNPs to attach on the cell surface and further to enter the cell, which was responsible for the increased toxicity. These findings provide new insights into how nanoplastics induce contact toxicity in microalgae cells through specific biointerfacial interactions.


Assuntos
Microalgas , Nanopartículas , Poluentes Químicos da Água , Microplásticos , Poluentes Químicos da Água/toxicidade , Poliestirenos/química , Água Doce , Nanopartículas/química
7.
Sci Total Environ ; 858(Pt 1): 159799, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309257

RESUMO

Direct discharge of chromium-containing waste water and improper disposal of waste residues in industrial sites may lead to the vertical migration of metals into aquifers, posing serious threat to soil-groundwater system. The heterogeneity in soil profile further aggravates the complexity and unpredictability of this transport process. However, topsoil was the main focus of most studies. Herein, the vertical transport and transformation of Cr in soils at different depths in three industrial sites (i.e., Shijiazhuang, Zhuzhou, and Guangzhou) were investigated to delineate Cr transport and retention characteristics under complex conditions. Regional and vertical differences in soil properties led to the specificity in Cr migration behaviors among these three sites. Correlation analysis showed that soil pH (r = -0.909, p < 0.05) and Fe content (r = 0.949, p < 0.01) were the major controlling factors of Cr(VI) migration and transformation in aquifers. Furthermore, the soil of Zhuzhou site showed the maximum adsorption capacity for Cr(VI) (0.225 mol/kg), and the strongest reduction ability of Cr(VI) was observed in the Guangzhou soil. Results of model-based long-term forecast indicated that the Cr(III) concentration in the liquid phase of Guangzhou subsoil could reach 0.08 mol/m3 within 20 years. Heavier rainfall condition exacerbated the contamination due to an increased pollutant flux and enhanced convection. Specially, Cr was fixed in the topsoil of Zhuzhou site with the formation of PbCrO4 and presented least vertical migration risk. The conclusions above can provide scientific theoretical guidance for heavy metal pollution prevention and control in industrial contaminated regions.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Cromo/análise , Metais Pesados/análise
8.
Toxics ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888704

RESUMO

This study evaluated the effectiveness of six Technosols designed for the remediation of polluted soils (PS) by metal(loid)s at physicochemical, biological, and ecotoxicological levels and at a microcosm scale. Technosols T1-T6 were prepared by combining PS with a mix of organic and inorganic wastes from mining, urban, and agro-industrial activities. After two months of surface application of Technosols on polluted soils, we analysed the soil properties, metal(loid) concentration in total, soluble and bioavailable fractions, soil enzymatic activities, and the growth responses of Trifolium campestre and Lactuca sativa in both the Technosols and the underlying polluted soils. All Technosols improved the unfavourable conditions of polluted soils by neutralising acidity, increasing the OC, reducing the mobility of most metal(loid)s, and stimulating both the soil enzymatic activities and growths of T. campestre and L. sativa. The origin of organic waste used in the Technosols strongly conditioned the changes induced in the polluted soils; in this sense, the Technosols composed of pruning and gardening vermicompost (T3 and T6) showed greater reductions in toxicity and plant growth than the other Technosols composed with different organic wastes. Thus, these Technosols constitute a potential solution for the remediation of persistent polluted soils that should be applied in large-scale and long-term interventions to reinforce their feasibility as a cost-effective ecotechnology.

9.
Toxics ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112525

RESUMO

The present work evaluated the influence of eight different soil remediation techniques, based on the use of residual materials (gypsum, marble, vermicompost) on the reduction in metal(loid)s toxicity (Cu, Zn, As, Pb and Cd) in a polluted natural area. Selected remediation treatments were applied in a field exposed to real conditions and they were evaluated one year after the application. More specifically, five ecotoxicological tests were carried out using different organisms on either the solid or the aqueous (leachate) fraction of the amended soils. Likewise, the main soil properties and the total, water-soluble and bioavailable metal fractions were determined to evaluate their influence on soil toxicity. According to the toxicity bioassays performed, the response of organisms to the treatments differed depending on whether the solid or the aqueous fraction was used. Our results highlighted that the use of a single bioassay may not be sufficient as an indicator of toxicity pathways to select soil remediation methods, so that the joint determination of metal availability and ecotoxicological response will be determinant for the correct establishment of any remediation technique carried out under natural conditions. Our results indicated that, of the different treatments used, the best technique for the remediation of metal(loid)s toxicity was the addition of marble sludge with vermicompost.

10.
J Hazard Mater ; 416: 125761, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819642

RESUMO

Essential elements can affect the bioavailability, uptake, and toxicity of metals. However, hardly any research has focused on the roles of essential elements on the toxicity of rare earth metals. Here we examined how P and Fe modified the individual and binary toxicity of Y and Ce to Triticum aestivum, respectively. Standard root elongation tests were used to quantify the toxicity of both single and binary mixtures at three levels of P addition (1, 5, and 10 µM) and Fe addition (0.1, 1, and 5 mM). Our results showed that both P and Fe can alleviate individual toxicity of Y or Ce irrespective of the dose indicators as suggested by the enhanced EC50 values. Both P and Fe might mitigate Y/Ce toxicity by limiting Y/Ce uptake into roots and improving nutritional status of wheats, whereas P can also decrease free Y/Ce ion activities in the exposure media. As for the mixture toxicity of Y and Ce, only improved P, but not Fe can exhibit approximately additive mixture toxicity, which can be adequately predicted by the simple Concentration Addition model. Our results suggested the important roles of P and Fe in assessing Y and Ce toxicity accurately.


Assuntos
Cério , Metais Terras Raras , Cério/toxicidade , Metais , Triticum , Ítrio/toxicidade
11.
Sci Total Environ ; 790: 148223, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111781

RESUMO

A comprehensive study of the toxicity of lanthanides (LN) in relation to the media composition will enhance the prediction of their potential adverse effects for living organisms. Here we examined the effect of different media on the V. faba root elongation and on the cytotoxic (mitotic index) and the genotoxic (micronucleated cell number) effects from toxicity tests with Ce, Gd and Lu (100, 800 and 6400 µg L-1). Three different exposure media were selected: the standard Hoagland media (SH); an alternative SH, without phosphates (SH-P); and distilled water (DW). In the SH no cyto-genotoxic effects were observed and even, for low LN content, potential root elongation stimulation was reported. The absence of toxic effects was explained by a drastic decrease of the total dissolved LN concentration due to the presence of phosphates causing LN precipitation. In SH-P, LN remained largely soluble and inhibition of root elongation was observed mainly for the highest treatments. While in the tests done in DW, toxic effects were obtained for all treatments. Our results showed that in absence of phosphorous, LN appear mainly as free form and complexed in carbonates and sulphates, and can cause toxic effects, whereas toxicity is not expected when phosphorous is available in aquatic media. The highest LN root contents were observed for the tests using distilled water, possibly due to the absence of competition by Ca2+ for uptake. The present work demonstrated that media composition has a great impact in assessing the ecotoxicology of lanthanides.


Assuntos
Elementos da Série dos Lantanídeos , Vicia faba , Dano ao DNA , Ecotoxicologia , Raízes de Plantas , Testes de Toxicidade
12.
Chemosphere ; 254: 126905, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957298

RESUMO

With the development of modern technologies, the exploitation and application of rare earth metals (REMs) have increased parallelly. Consequently, more REMs are entering into the environment and therefore there is a pressing need to assess their potential environmental hazards. Here, a standard toxicity test with wheat (Triticum aestivum) was conducted to investigate the single and mixture toxicity of La and Ce in solutions with different levels of calcium and nitrilotriacetic acid (NTA) and results were deciphered by different modeling approaches. Both La and Ce caused adverse effect to wheat, but the presence of Ca and NTA alleviated their toxicity. The obtained EC50 for [La] or [Ce] changed by more than 28-fold and by 4-fold, respectively, with the increase of Ca or NTA. The biotic ligand model (BLM) explained approximately 93% variation of single La or Ce toxicity. The binding constants obtained were 4.14, 6.67, and 6.59 for logKCaBL, logKLaBL, and logKCeBL respectively. The electrostatic toxicity model (ETM) was proved as effective as the BLM, with R2 = 0.93 for La and R2 = 0.92 for Ce. For La-Ce mixtures, parameters from single toxicity approaches were applied successfully to predict the mixture toxicity with concentration addition (CA) model based on the BLM or ETM theory (R2 = 0.92 and RMSE = 8.56; R2 = 0.90 and RMSE = 9.6, respectively). Thus, the results obtained in this study prove that both ETM and BLM theories are appropriate to predict single and mixture REMs toxicity, providing coherent and promising tools for the risk assessment of REM pollution.


Assuntos
Cálcio/química , Cério/toxicidade , Lantânio/toxicidade , Ácido Nitrilotriacético/química , Testes de Toxicidade/métodos , Triticum/efeitos dos fármacos , Ligantes , Modelos Teóricos , Soluções , Eletricidade Estática , Triticum/crescimento & desenvolvimento
13.
Sci Total Environ ; 745: 140926, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712499

RESUMO

Arsenic, copper, and zinc are common elements found in contaminated soils but little is known about their combined effects on plants when presented simultaneously. Here, we systematically investigated the phytotoxicity and uptake of binary and ternary mixtures of As, Cu, and Zn in a soil-plant system, using wheat (Triticum aestivum) as model species. The reference models of concentration addition (CA) and response addition (RA) coupled with different expressions of exposure (total concentrations in soil ([M]tot, mg/kg), free ion activities in soil solution ({M}, µM), and internal concentrations in plant roots ([M]int, µg/g)), were selected to assess the interaction mechanisms of binary mixtures of AsCu, AsZn, and CuZn. Metal(loid) interactions in soil were estimated in terms of solution-solid partitioning, root uptake, and root elongation effects. The partitioning of one metal(loid) between the soil solution and solid phase was most often inhibited by the presence of the other metal(loid). In terms of uptake, inhibitory effects and no effects were observed in the mixtures of As, Cu, and Zn, depending on the mixture combinations and the dose metrics used. In terms of toxicity, simple (antagonistic or synergistic) and more complex (dose ratio-dependent or dose level-dependent) interaction patterns of binary mixtures occurred, depending on the dose metrics selected and the reference models used. For ternary mixtures (As-Cu-Zn), nearly additive effects were observed irrespective of dose descriptors and reference models. The observed interactions in this study may help to understand and predict the joint toxicity of metal(loid)s mixtures in soil-plant system. Mixture interactions and bioavailability should be incorporated into the regulatory framework for accurate risk assessment of multimetal-contaminated sites.


Assuntos
Arsênio/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Cobre/toxicidade , Solo , Triticum/efeitos dos fármacos , Zinco/análise , Zinco/toxicidade
14.
Environ Toxicol Chem ; 36(1): 137-146, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27254153

RESUMO

To assess the influence of soil properties and aging on the availability and toxicity of zinc (Zn) applied as nanoparticles (Zn oxide [ZnO]-NPs) or as Zn2+ ions (Zn chloride [ZnCl2 ]), 3 natural soils were individually spiked with either ZnO-NPs or ZnCl2 and incubated for up to 6 mo. Available Zn concentrations in soil were measured by porewater extraction (ZnPW), whereas earthworms (Eisenia andrei) were exposed to study Zn bioavailability. Porewater extraction concentrations were lower when Zn was applied as NPs compared to the ionic form and decreased with increasing soil pH. For both Zn forms and Zn-PW values were affected by aging, but they varied among the tested soils, highlighting the influence of soil properties. Internal Zn concentration in the earthworms (ZnE) was highest for the soil with high organic carbon content (5.4%) and basic pH (7.6) spiked with Zn-NPs, but the same soil spiked with ZnCl2 showed the lowest increase in ZnE compared to the control. Survival, weight change, and reproduction of the earthworms were affected by both Zn forms; but differences in toxicity could not be explained by soil properties or aging. This shows that ZnO-NPs and ZnCl2 behave differently in soils depending on soil properties and aging processes, but differences in earthworm toxicity remain unexplained. Environ Toxicol Chem 2017;36:137-146. © 2016 SETAC.


Assuntos
Nanopartículas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Poluentes do Solo/toxicidade , Solo/química , Óxido de Zinco/toxicidade , Animais , Disponibilidade Biológica , Fenômenos Químicos , Cloretos/química , Cloretos/metabolismo , Cloretos/toxicidade , Ecotoxicologia , Nanopartículas/química , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Fatores de Tempo , Compostos de Zinco/química , Compostos de Zinco/metabolismo , Compostos de Zinco/toxicidade , Óxido de Zinco/química , Óxido de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA