Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Hepatology ; 76(4): 1164-1179, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388524

RESUMO

BACKGROUND AND AIMS: Numerous HCV entry factors have been identified, and yet information regarding their spatiotemporal dynamics is still limited. Specifically, one of the main entry factors of HCV is occludin (OCLN), a protein clustered at tight junctions (TJs), away from the HCV landing site. Thus, whether HCV particles slide toward TJs or, conversely, OCLN is recruited away from TJs remain debated. APPROACH AND RESULTS: Here, we generated CRISPR/CRISPR-associated protein 9 edited Huh7.5.1 cells expressing endogenous levels of enhanced green fluorescent protein/OCLN and showed that incoming HCV particles recruit OCLN outside TJs, independently of claudin 1 (CLDN1) expression, another important HCV entry factor located at TJs. Using ex vivo organotypic culture of hepatic slices obtained from human liver explants, a physiologically relevant model that preserves the overall tissue architecture, we confirmed that HCV associates with OCLN away from TJs. Furthermore, we showed, by live cell imaging, that increased OCLN recruitment beneath HCV particles correlated with lower HCV motility. To decipher the mechanism underlying virus slow-down upon OCLN recruitment, we performed CRISPR knockout (KO) of CLDN1, an HCV entry factor proposed to act upstream of OCLN. Although CLDN1 KO potently inhibits HCV infection, OCLN kept accumulating underneath the particle, indicating that OCLN recruitment is CLDN1 independent. Moreover, inhibition of the phosphorylation of Ezrin, a protein involved in HCV entry that links receptors to the actin cytoskeleton, increased OCLN accumulation and correlated with more efficient HCV internalization. CONCLUSIONS: Together, our data provide robust evidence that HCV particles interact with OCLN away from TJs and shed mechanistic insights regarding the manipulation of transmembrane receptor localization by extracellular virus particles.


Assuntos
Hepatite C , Junções Íntimas , Proteína 9 Associada à CRISPR/metabolismo , Claudina-1/genética , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatócitos/metabolismo , Humanos , Ocludina , Vírion , Internalização do Vírus
2.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33554340

RESUMO

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Assuntos
Bases de Dados como Assunto , Neoplasias/patologia , Humanos
3.
J Biol Chem ; 295(39): 13474-13487, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32690605

RESUMO

Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, ß1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endossomos/metabolismo , Integrina beta1/metabolismo , Fatores de Transcrição/metabolismo , Quinases da Família src/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proto-Oncogene Mas , Transdução de Sinais , Fatores de Transcrição/deficiência , Quinases da Família src/deficiência
4.
Biol Cell ; 112(2): 53-72, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31859373

RESUMO

BACKGROUND: Fibroblasts executing directional migration position their centrosome, and their Golgi apparatus, in front of the nucleus towards the cell leading edge. Centrosome positioning relative to the nucleus has been associated to mechanical forces exerted on the centrosome by the microtubule-dependent molecular motor cytoplasmic dynein 1, and to nuclear movements such as rearward displacement and rotation events. Dynein has been proposed to regulate the position of the centrosome by exerting pulling forces on microtubules from the cell leading edge, where the motor is enriched during migration. However, the mechanism explaining how dynein acts at the front of the cells has not been elucidated. RESULTS: We present here results showing that the protein Focal Adhesion Kinase (FAK) interacts with dynein and regulates the enrichment of the dynein/dynactin complex at focal adhesions at the cell the leading edge of migrating fibroblasts. This suggests that focal adhesions provide anchoring sites for dynein during the polarisation process. In support of this, we present evidence indicating that the interaction between FAK and dynein, which is regulated by the phosphorylation of FAK on its Ser732 residue, is required for proper centrosome positioning. Our results further show that the polarisation of the centrosome can occur independently of nuclear movements. Although FAK regulates both nuclear and centrosome motilities, downregulating the interaction between FAK and dynein affects only the nuclear independent polarisation of the centrosome. CONCLUSIONS: Our work highlights the role of FAK as a key player in the regulation of several aspects of cell polarity. We thus propose a model in which the transient localisation of dynein with focal adhesions provides a tuneable mechanism to bias dynein traction forces on microtubules allowing proper centrosome positioning in front of the nucleus. SIGNIFICANCE: We unravel here a new role for the cancer therapeutic target FAK in the regulation of cell morphogenesis.


Assuntos
Movimento Celular , Polaridade Celular , Dineínas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Animais , Dineínas/genética , Quinase 1 de Adesão Focal/genética , Camundongos , Células NIH 3T3 , Transporte Proteico
5.
Biol Cell ; 112(5): 140-151, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034780

RESUMO

BACKGROUND INFORMATION: Claudin-1 (CLDN1) is a four-span transmembrane protein localised at cell-cell tight junctions (TJs), playing an important role in epithelial impermeability and tissue homoeostasis under physiological conditions. Moreover, CLDN1 expression is up-regulated in several cancers, and the level of CLDN1 expression has been proposed as a prognostic marker of patient survival. RESULTS: Here, we generated and characterised a novel reporter cell line expressing endogenous fluorescent levels of CLDN-1, allowing dynamic monitoring of CLDN-1 expression levels. Specifically, a hepatocellular carcinoma Huh7.5.1 monoclonal cell line was bioengineered using CRISPR/Cas9 to endogenously express a fluorescent TagRFP-T protein fused at the N-terminus of the CLDN1 protein. These cells were proved useful to measure CLDN1 expression and distribution in live cells. However, the cells were resistant to hepatitis C virus (HCV) infection, of which CLDN1 is a viral receptor, while retaining permissiveness to VSV-G-decorated pseudoparticles. Nonetheless, the TagRFP-CLDN1+/+ cell line showed expected CLDN1 protein localisation at TJs and the cell monolayer had similar impermeability and polarisation features as its wild-type counterpart. Finally, using fluorescence recovery after photobleaching (FRAP) approaches, we measured that the majority of endogenous and overexpressed TagRFP-CLDN1 diffuses rapidly within the TJ, whereas half of the overexpressed EGFP-CLDN1 proteins were stalled at TJs. CONCLUSIONS: The Huh7.5.1 TagRFP-CLDN1+/+ edited cell line showed physiological features comparable to that of non-edited cells, but became resistant to HCV infection. Our data also highlight the important impact of the fluorescent protein chosen for endogenous tagging. SIGNIFICANCE: Although HCV-related studies may not be achieved with these cells, our work provides a novel tool to study the cell biology of TJ-associated proteins and a potential screening strategy measuring CLDN1 expression levels.


Assuntos
Claudina-1/metabolismo , Técnicas de Introdução de Genes , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Internalização do Vírus , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Movimento Celular , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia
6.
J Cell Biochem ; 117(5): 1167-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26477879

RESUMO

A large number of plants used in traditional medicines have been shown to possess antitumor activities. The aims of this study were to evaluate any anticancer effect of the essential oil (EO) extracted from P. tortuosus against B16F10 melanoma cancer cells in vitro as well as in vivo. In vitro, EO was shown to induce apoptosis and to inhibit migration and invasion processes. Further investigation revealed that EO decreased focal adhesion and invadopodia formation which was accompanied by a drastic downregulation of FAK, Src, ERK, p130Cas and paxillin. Moreover, EO treatment decreased the expression level of p190RhoGAP, and Grb2, which impair cell migration and actin assembly. Mice bearing the melanoma cells were used to confirm any in vivo effectiveness of the EO as an anti-tumor promoting agent. In mice dosed with 100 mg EO/kg/d (for 27 days), tumor weight was inhibited by 98% compared to that in mice that did not receive the product. In conclusion, these data suggested to us that an EO of P. tortuosus could evolve to be a potential medicinal resource for use in the treatment of cancers.


Assuntos
Apiaceae/química , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Óleos Voláteis/farmacologia , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Fitoterapia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Carga Tumoral/efeitos dos fármacos
7.
Nucleic Acids Res ; 42(9): 5616-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598253

RESUMO

The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Reparo do DNA por Junção de Extremidades , Poli(ADP-Ribose) Polimerases/fisiologia , Reparo de DNA por Recombinação , Antígenos Nucleares/metabolismo , Antineoplásicos/farmacologia , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteína de Replicação A/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
8.
Cancer Cell Int ; 14: 42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860258

RESUMO

BACKGROUND: Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. METHODS: The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. RESULTS: We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca(2+) transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca(2+) oscillations in oscillating cells and induced Ca(2+) oscillations in quiescent cells. The frequency of migration-associated Ca(2+) oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-ß1 integrin antibody. Application of glutamate induced increases in internal free Ca(2+) concentration ([Ca(2+)]i). Finally we found that compounds known to increase [Ca(2+)]i in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. CONCLUSION: Our data demonstrate that glutamate increases migration speed in astrocytoma cells via enhancement of migration-associated Ca(2+) oscillations that in turn induce glutamate secretion via an autocrine mechanism. Thus, glutamate receptors are further validated as potential targets for astrocytoma cancer therapy.

9.
Bioinform Adv ; 3(1): vbad156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928344

RESUMO

Motivation: Cells adhering to the extracellular matrix can sense and respond to a wide variety of chemical and physical features of the adhesive surface. Traction force microscopy (TFM) allows determining the tensile forces exerted by the cells on their substrate with high resolution. Results: To allow broad access of this techniques to cell biology laboratories we developed JeasyTFM, an open-source ImageJ package able to process multi-color and multi-position time-lapse pictures thus suitable for the automatic analysis of large TFM data. Availability and implementation: JEasyTFM is implemented as an ImageJ plugin and available at: http://questpharma.u-strasbg.fr/JEasyTFM.html.

10.
Cell Death Dis ; 14(3): 190, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899008

RESUMO

Cell invasion is a highly complex process that requires the coordination of cell migration and degradation of the extracellular matrix. In melanoma cells, as in many highly invasive cancer cell types these processes are driven by the regulated formation of adhesives structures such as focal adhesions and invasive structures like invadopodia. Structurally, focal adhesion and invadopodia are quite distinct, yet they share many protein constituents. However, quantitative understanding of the interaction of invadopodia with focal adhesion is lacking, and how invadopodia turn-over is associated with invasion-migration transition cycles remains unknown. In this study, we investigated the role of Pyk2, cortactin and Tks5 in invadopodia turnover and their relation with focal adhesions. We found that active Pyk2 and cortactin are localised at both focal adhesions and invadopodia. At invadopodia, localisation of active Pyk2 is correlated with ECM degradation. During invadopodia disassembly, Pyk2 and cortactin but not Tks5 are often relocated at nearby nascent adhesions. We also show that during ECM degradation, cell migration is reduced which is likely related to the sharing of common molecules within the two structures. Finally, we found that the dual FAK/Pyk2 inhibitor PF-431396 inhibits both focal adhesion and invadopodia activities thereby reducing both migration and ECM degradation.


Assuntos
Melanoma , Podossomos , Humanos , Cortactina/metabolismo , Podossomos/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Invasividade Neoplásica , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Melanoma/metabolismo
11.
Invest New Drugs ; 30(6): 2121-31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22170088

RESUMO

Glioblastoma represent the most frequent primary tumors of the central nervous system and remain among the most aggressive human cancers as available therapeutic approaches still fail to contain their invasiveness. Many studies have reported elevated expression of the Focal Adhesion Kinase (FAK) protein in glioblastoma, associated with an increase in the rates of both migration and invasion. This designates FAK as a promising target to limit invasiveness in glioblastoma. Thymoquinone (TQ), the main phytoactive compound of Nigella sativa has shown remarkable anti-neoplasic activities on a variety of cancer cells. Here, we studied the anti-invasive and anti-migratory effects of TQ on human glioblastoma cells. The results obtained indicated that TQ treatment reduced migration, adhesion and invasion of both U-87 and CCF-STTG1 cells. This was accompanied by a drastic down-regulation of FAK, associated with a reduction of ERK phosphorylation as well as MMP-2 and MMP-9 secretion. This study provides new data on FAK regulation by a natural product (TQ) which could be of a great value for the development of novel therapies in glioblastoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzoquinonas/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Glioblastoma , Humanos , Invasividade Neoplásica , Nigella sativa
12.
Glia ; 59(2): 308-19, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125662

RESUMO

CD47 is a membrane receptor that plays pivotal roles in many pathophysiological processes, including infection, inflammation, cell spreading, proliferation, and apoptosis. We show that activation of CD47 increases proliferation of human U87 and U373 astrocytoma cells but not normal astrocytes. CD47 function-blocking antibodies inhibit proliferation of untreated U87 and U373 cells but not normal astrocytes, suggesting that CD47 may be constitutively activated in astrocytoma. CD47 expression levels were similar in our three cell types. CD47 couples to G-proteins in astrocytes and astrocytoma and especially to the Gßγ dimer. Downstream signaling following CD47 activation involves Gßγ dimer-dependent activation of the PI3K/Akt pathway in astrocytoma cells but not in normal astrocytes. This pathway is known to be deregulated in astrocytoma, leading to cell proliferation and enhanced survival signals. Putative PLIC-1 interaction with CD47 in astrocytoma cells but not astrocytes may contribute to the proliferative effect observed upon activation of CD47. Our data indicate that CD47 receptors have a stimulatory role in cell proliferation and demonstrate for the first time that CD47 signals via the PI3K/Akt pathway in cancerous cells but not normal cells.


Assuntos
Antígeno CD47/metabolismo , Proliferação de Células , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais/fisiologia , Anticorpos/farmacologia , Apoptose/fisiologia , Astrócitos/efeitos dos fármacos , Astrocitoma/patologia , Astrocitoma/fisiopatologia , Autofagia/fisiologia , Antígeno CD47/genética , Antígeno CD47/imunologia , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação/métodos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Timidina/metabolismo , Fatores de Tempo , Trítio/metabolismo
13.
Cells ; 10(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831480

RESUMO

EGFR (epidermal growth factor receptor), a member of the ErbB tyrosine kinase receptor family, is a clinical therapeutic target in numerous solid tumours. EGFR overexpression in glioblastoma (GBM) drives cell invasion and tumour progression. However, clinical trials were disappointing, and a molecular basis to explain these poor results is still missing. EGFR endocytosis and membrane trafficking, which tightly regulate EGFR oncosignaling, are often dysregulated in glioma. In a previous work, we showed that EGFR tyrosine kinase inhibitors, such as gefitinib, lead to enhanced EGFR endocytosis into fused early endosomes. Here, using pharmacological inhibitors, siRNA-mediated silencing, or expression of mutant proteins, we showed that dynamin 2 (DNM2), the small GTPase Rab5 and the endocytosis receptor LDL receptor-related protein 1 (LRP-1), contribute significantly to gefitinib-mediated EGFR endocytosis in glioma cells. Importantly, we showed that inhibition of DNM2 or LRP-1 also decreased glioma cell responsiveness to gefitinib during cell evasion from tumour spheroids. By highlighting the contribution of endocytosis proteins in the activity of gefitinib on glioma cells, this study suggests that endocytosis and membrane trafficking might be an attractive therapeutic target to improve GBM treatment.


Assuntos
Endocitose , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Linhagem Celular Tumoral , Dinamina II/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Inativação Gênica , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
14.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919725

RESUMO

The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells' invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK-Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK-paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK-paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.

15.
Nanoscale ; 13(20): 9236-9251, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33977943

RESUMO

Glioblastoma are characterized by an invasive phenotype, which is thought to be responsible for recurrences and the short overall survival of patients. In the last decade, the promising potential of ultrasmall gadolinium chelate-coated gold nanoparticles (namely Au@DTDTPA(Gd)) was evidenced for image-guided radiotherapy in brain tumors. Considering the threat posed by invasiveness properties of glioma cells, we were interested in further investigating the biological effects of Au@DTDTPA(Gd) by examining their impact on GBM cell migration and invasion. In our work, exposure of U251 glioma cells to Au@DTDTPA(Gd) led to high accumulation of gold nanoparticles, that were mainly diffusely distributed in the cytoplasm of the tumor cells. Experiments pointed out a significant decrease in glioma cell invasiveness when exposed to nanoparticles. As the proteolysis activities were not directly affected by the intracytoplasmic accumulation of Au@DTDTPA(Gd), the anti-invasive effect cannot be attributed to matrix remodeling impairment. Rather, Au@DTDTPA(Gd) nanoparticles affected the intrinsic biomechanical properties of U251 glioma cells, such as cell stiffness, adhesion and generated traction forces, and significantly reduced the formation of protrusions, thus exerting an inhibitory effect on their migration capacities. Consistently, analysis of talin-1 expression and membrane expression of beta 1 integrin evoke the stabilization of focal adhesion plaques in the presence of nanoparticles. Taken together, our results highlight the interest in Au@DTDTPA(Gd) nanoparticles for the therapeutic management of astrocytic tumors, not only as a radio-enhancing agent but also by reducing the invasive potential of glioma cells.


Assuntos
Glioma , Nanopartículas Metálicas , Linhagem Celular Tumoral , Gadolínio , Glioma/tratamento farmacológico , Ouro , Humanos , Nanopartículas Metálicas/toxicidade , Invasividade Neoplásica
16.
Biochem Biophys Res Commun ; 390(3): 523-8, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19800870

RESUMO

Tat-interactive protein, 60kDa (Tip60) is a histone acetyltransferase with specificity toward lysine 5 of histone H2A (H2AK5) and plays multiple roles in chromatin remodeling processes. Co-immunoprecipitation experiments performed on Jurkat cells, showed that Tip60 is present in the same macro-molecular complex as UHRF1 (Ubiquitin-like containing PHD and RING domain 1), DNMT1 (DNA methyltransferase 1), and HDAC1 (histone deacetylase 1). Furthermore, immunocytochemistry experiments confirmed that Tip60 co-localizes with the UHRF1/DNMT1 complex. Although down-regulation of UHRF1 by RNA interference enhanced Tip60 expression, a significant decrease of the level of acetylated H2AK5 was observed. Consistently, we have observed that down-regulation of Tip60 and DNMT1 by RNA interference, dramatically reduced the levels of acetylated H2AK5. Altogether, these results suggest that Tip60 is a novel partner of the epigenetic integration platform interplayed by UHRF1, DNMT1 and HDAC1 involved in the epigenetic code replication.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Epigênese Genética , Histona Acetiltransferases/metabolismo , Acetilação , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Imunoprecipitação , Células Jurkat , Lisina/metabolismo , Lisina Acetiltransferase 5 , Ubiquitina-Proteína Ligases
17.
Cancer Res ; 66(12): 6002-7, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16778170

RESUMO

The potential role of alpha5beta1 integrins in cancer has recently attracted much interest. However, few alpha5beta1-selective antagonists have been developed compared with other integrins. The most specific nonpeptidic alpha5beta1 antagonist described thus far, SJ749, inhibits angiogenesis by affecting adhesion and migration of endothelial cells. We investigated the effects of SJ749 in two human astrocytoma cell lines, A172 and U87, which express different levels of alpha5beta1. SJ749 dose-dependently inhibited adhesion of both cell types on fibronectin. Application of SJ749 to spread cells led to formation of nonadherent spheroids for A172 cells but had no effect on U87 cell morphology. SJ749 also reduced proliferation of A172 cells due to a long lasting G0-G1 arrest, whereas U87 cells were only slightly affected. However, under nonadherent culture conditions (soft agar), SJ749 significantly reduced the number of colonies formed only by U87 cells. As U87 cells express more alpha5beta1 than A172 cells, we specifically examined the effect of SJ749 on A172 cells overexpressing alpha5. Treatment of alpha5-A172 cells with SJ749 decreased colony formation similarly to that observed in U87 cells. Therefore, in nonadherent conditions, the effect of SJ749 on tumor cell growth characteristics depends on the level of alpha5beta1 expression. Our study highlights the importance of alpha5beta1 as an anticancer target and shows for the first time that a small nonpeptidic alpha5beta1-specific antagonist affects proliferation of tumor cells.


Assuntos
Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Integrina alfa5beta1/antagonistas & inibidores , Propionatos/farmacologia , Piridinas/farmacologia , Compostos de Espiro/farmacologia , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Adesão Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Integrina alfa5beta1/biossíntese , Integrina alfa5beta1/metabolismo , Esferoides Celulares , Especificidade por Substrato , Ensaio Tumoral de Célula-Tronco
18.
Cancers (Basel) ; 10(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134553

RESUMO

Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.

19.
Virus Res ; 123(1): 30-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16956688

RESUMO

Coxsackieviruses A (CVA) are associated with several clinical manifestations such as aseptic meningitis and paralytic syndromes in humans. Most CVA are difficult-to-cultivate, which impedes their propagation and isolation from clinical material. Here, we tested the ability of cultivable (CVA-13, CVA-14), and difficult-to-cultivate (CVA-6, CVA-22) strains to infect primary cultures of skeletal muscle cells established from newborn mice. We found that such cultures sustained the multiplication of these CVA, as evidenced by the development of a cytopathic effect, already in the initial preparation or after passaging once. Cultures established for no more than 24h were sensitive to infection whereas older preparations were resistant. Using confocal microscopy after double-immunolabeling of the VP1 capsid protein and the muscle cell marker myosin, we demonstrated that only the myoblasts were infected, resulting in VP1 expression throughout their cytoplasm. Inoculation of infected cultures to suckling mice resulted in paralysis indicating that infection was productive. The nature of candidate receptors for virus entry in such cultures and the influence of cell culture conditions on the expression of these putative receptors are discussed. This work suggests that primary cultures of skeletal muscle cells could be used to propagate and isolate any CVA strain.


Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Infecções por Enterovirus/virologia , Cultura de Vírus/métodos , Animais , Animais Recém-Nascidos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Camundongos , Músculo Esquelético/virologia , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/virologia
20.
Cancer Lett ; 376(2): 328-38, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27063097

RESUMO

Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.


Assuntos
Neoplasias Encefálicas/metabolismo , Adesão Celular , Comunicação Celular , Movimento Celular , Junções Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Integrina alfaV/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina alfaV/genética , Invasividade Neoplásica , Interferência de RNA , Transdução de Sinais , Esferoides Celulares , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA