Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214234

RESUMO

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Criança , Humanos , Neoplasias Encefálicas/patologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioma/patologia , Histonas/genética , Histonas/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética
2.
Nucleic Acids Res ; 43(5): 2560-74, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25712104

RESUMO

DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3.


Assuntos
Replicação do DNA , Histonas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Origem de Replicação , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células HeLa , Histona Desmetilases , Humanos , Immunoblotting , Lisina/metabolismo , Metilação , Oxirredutases N-Desmetilantes/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Interferência de RNA , Fatores de Tempo
3.
Transfusion ; 55(7): 1644-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25702777

RESUMO

BACKGROUND: We conducted a prospective single-blind randomized study to assess whether a single 80,000 IU dose of human recombinant erythropoietin (HRE), given just 2 days before cardiac surgery, could be effective in reducing perioperative allogeneic red blood cell transfusion (aRBCt). STUDY DESIGN AND METHODS: Six-hundred patients presenting with preoperative hemoglobin (Hb) level of not more than 14.5 g/dL were randomly assigned to either HRE or control. The primary endpoint was the incidence of perioperative aRBCt. The secondary endpoints were mortality and the incidence of adverse events in the first 45 days after surgery, Hb level on Postoperative Day 4, and number of units of RBC transfusions in the first 4 days after surgery. RESULTS: A total of 17% (HRE) versus 39% (control) required transfusion (relative risk, 0.436; p<0.0005). After baseline Hb was controlled for, there was no difference in the incidence of aRBCt between HRE (0%) and control (3.5%) among the patients with baseline Hb of 13.0 g/dL or more, which included the nonanemic fraction of the study population. The mean (range) Hb level on Postoperative Day 4 was 10.2 (9.9-10.6) g/dL (HRE) versus 8.7 (8.5-9.2) g/dL (control; p<0.0005). The distribution of number of units transfused was shifted toward fewer units in HRE (p<0.0005). The all-cause mortality at 45 days was 3.00% (HRE) versus 3.33% (control). The 45-day adverse event rate was 4.33% (HRE) versus 5.67% (control; both p=NS). CONCLUSION: In anemic patients (Hb<13 g/dL), a single high dose of HRE administered 2 days before cardiac surgery is effective in reducing the incidence of aRBCt without increasing adverse events.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Transfusão de Eritrócitos/métodos , Eritropoetina/administração & dosagem , Assistência Perioperatória/métodos , Complicações Pós-Operatórias , Adulto , Idoso , Idoso de 80 Anos ou mais , Transfusão de Eritrócitos/efeitos adversos , Humanos , Incidência , Pessoa de Meia-Idade , Assistência Perioperatória/efeitos adversos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/mortalidade , Fatores de Tempo
4.
Crit Care ; 19: 83, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25880548

RESUMO

INTRODUCTION: Hemorrhage is the principal cause of death in the first few hours following severe injury. Coagulopathy is a frequent complication of critical bleeding. A network of Italian trauma centers recently developed a protocol to prevent and treat trauma-induced coagulopathy. A pre-post cohort multicenter study was conducted to assess the impact of the early coagulation support (ECS) protocol on blood products consumption, mortality and treatment costs. METHODS: We prospectively collected data from all severely injured patients (Injury Severity Score (ISS) >15) admitted to two trauma centers in 2013 and compared these findings with the data for 2011. Patients transfused with at least 3 units of packed red blood cells (PRBCs) within 24 hours of an accident were included in the study. In 2011, patients with significant hemorrhaging were treated with early administration of plasma with the aim of achieving a high (≥1:2) plasma-to-PRBC ratio. In 2013, the ECS protocol was the treatment strategy. Outcome data, blood product consumption and treatment costs were compared between the two periods. RESULTS: The two groups were well matched for demographics, injury severity (ISS: 32.9 in 2011 versus 33.6 in 2013) and clinical and laboratory data on admission. In 2013, a 40% overall reduction in PRBCs was observed, together with a 65% reduction in plasma and a 52% reduction in platelets. Patients in the ECS group received fewer blood products: 6.51 units of PRBCs versus 8.14 units. Plasma transfusions decreased from 8.98 units to 4.21 units (P <0.05), and platelets fell from 4.14 units to 2.53 units (P <0.05). Mortality in 2013 was 13.5% versus 20% in 2011 (13 versus 26 hospital deaths, respectively) (nonsignificant). When costs for blood components, factors and point-of-care tests were compared, a €76,340 saving in 2013 versus 2011 (23%) was recorded. CONCLUSIONS: The introduction of the ECS protocol in two Italian trauma centers was associated with a marked reduction in blood product consumption, reaching statistical significance for plasma and platelets, and with a non-significant trend toward a reduction in early and 28-day mortality. The overall costs for transfusion and coagulation support (including point-of-care tests) decreased by 23% between 2011 and 2013.


Assuntos
Transtornos da Coagulação Sanguínea/mortalidade , Coagulação Sanguínea , Transfusão de Componentes Sanguíneos/métodos , Hemorragia/terapia , Plasma , Adulto , Transtornos da Coagulação Sanguínea/economia , Transtornos da Coagulação Sanguínea/etiologia , Transfusão de Componentes Sanguíneos/economia , Feminino , Mortalidade Hospitalar , Humanos , Escala de Gravidade do Ferimento , Itália , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ressuscitação/métodos , Análise de Sobrevida , Resultado do Tratamento
5.
Cells ; 9(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167489

RESUMO

Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.


Assuntos
Instabilidade Genômica , Histonas/metabolismo , Animais , Centrômero/metabolismo , Cromossomos/genética , Dano ao DNA , Humanos , Isoformas de Proteínas/metabolismo
6.
Nat Cell Biol ; 19(11): 1371-1378, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035360

RESUMO

The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2-/- breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy.


Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Animais , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Células HEK293 , Células HeLa , Humanos , Metilação/efeitos dos fármacos , Camundongos , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
7.
Trends Cell Biol ; 26(1): 52-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26437586

RESUMO

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Sobrevivência Celular , Instabilidade Genômica , Humanos , Mutação
8.
Cell Rep ; 15(11): 2488-99, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264184

RESUMO

BRCA1/2 proteins function in homologous recombination (HR)-mediated DNA repair and cooperate with Fanconi anemia (FA) proteins to maintain genomic integrity through replication fork stabilization. Loss of BRCA1/2 proteins results in DNA repair deficiency and replicative stress, leading to genomic instability and enhanced sensitivity to DNA-damaging agents. Recent studies have shown that BRCA1/2-deficient tumors upregulate Polθ-mediated alternative end-joining (alt-EJ) repair as a survival mechanism. Whether other mechanisms maintain genomic integrity upon loss of BRCA1/2 proteins is currently unknown. Here we show that BRCA1/2-deficient tumors also upregulate FANCD2 activity. FANCD2 is required for fork protection and fork restart in BRCA1/2-deficient tumors. Moreover, FANCD2 promotes Polθ recruitment at sites of damage and alt-EJ repair. Finally, loss of FANCD2 in BRCA1/2-deficient tumors enhances cell death. These results reveal a synthetic lethal relationship between FANCD2 and BRCA1/2, and they identify FANCD2 as a central player orchestrating DNA repair pathway choice at the replication fork.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Reparo do DNA por Junção de Extremidades , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patologia , Animais , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo do DNA por Junção de Extremidades/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Endodesoxirribonucleases , Instabilidade Genômica , Humanos , Camundongos Nus , Mutação/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ubiquitinação , Regulação para Cima/genética , DNA Polimerase teta
9.
J Clin Invest ; 125(12): 4625-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551685

RESUMO

Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers.


Assuntos
Carcinoma de Células Renais/enzimologia , Instabilidade Genômica , Histona Desmetilases/metabolismo , Neoplasias Renais/enzimologia , Proteínas de Neoplasias/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Animais , Carcinoma de Células Renais/genética , Homólogo 5 da Proteína Cromobox , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Heterocromatina/enzimologia , Heterocromatina/genética , Heterocromatina/patologia , Histona Desmetilases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Mutação , Células NIH 3T3 , Proteínas de Neoplasias/genética , Oxirredutases N-Desmetilantes/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA