Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 34(5): 1164-1174, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934383

RESUMO

BACKGROUND: Structural changes in the left atrium (LA) modestly predict outcomes in patients undergoing catheter ablation for atrial fibrillation (AF). Machine learning (ML) is a promising approach to personalize AF management strategies and improve predictive risk models after catheter ablation by integrating atrial geometry from cardiac computed tomography (CT) scans and patient-specific clinical data. We hypothesized that ML approaches based on a patient's specific data can identify responders to AF ablation. METHODS: Consecutive patients undergoing AF ablation, who had preprocedural CT scans, demographics, and 1-year follow-up data, were included in the study for a retrospective analysis. The inputs of models were CT-derived morphological features from left atrial segmentation (including the shape, volume of the LA, LA appendage, and pulmonary vein ostia) along with deep features learned directly from raw CT images, and clinical data. These were merged intelligently in a framework to learn their individual importance and produce the optimal classification. RESULTS: Three hundred twenty-one patients (64.2 ± 10.6 years, 69% male, 40% paroxysmal AF) were analyzed. Post 10-fold nested cross-validation, the model trained to intelligently merge and learn appropriate weights for clinical, morphological, and imaging data (AUC 0.821) outperformed those trained solely on clinical data (AUC 0.626), morphological (AUC 0.659), or imaging data (AUC 0.764). CONCLUSION: Our ML approach provides an end-to-end automated technique to predict AF ablation outcomes using deep learning from CT images, derived structural properties of LA, augmented by incorporation of clinical data in a merged ML framework. This can help develop personalized strategies for patient selection in invasive management of AF.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Masculino , Feminino , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Fibrilação Atrial/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Tomografia Computadorizada por Raios X/métodos , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Aprendizado de Máquina , Recidiva , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia
2.
PLoS Comput Biol ; 18(3): e1009893, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312675

RESUMO

Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120-270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Eletrocardiografia , Átrios do Coração , Humanos
3.
Europace ; 23(23 Suppl 1): i12-i20, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33437987

RESUMO

AIMS: Atrial fibrillation (AF) is sustained by re-entrant activation patterns. Ablation strategies have been proposed that target regions of tissue that may support re-entrant activation patterns. We aimed to characterize the tissue properties associated with regions that tether re-entrant activation patterns in a validated virtual patient cohort. METHODS AND RESULTS: Atrial fibrillation patient-specific models (seven paroxysmal and three persistent) were generated and validated against local activation time (LAT) measurements during an S1-S2 pacing protocol from the coronary sinus and high right atrium, respectively. Atrial models were stimulated with burst pacing from three locations in the proximity of each pulmonary vein to initiate re-entrant activation patterns. Five atria exhibited sustained activation patterns for at least 80 s. Models with short maximum action potential durations (APDs) were associated with sustained activation. Phase singularities were mapped across the atria sustained activation patterns. Regions with a low maximum conduction velocity (CV) were associated with tethering of phase singularities. A support vector machine (SVM) was trained on maximum local conduction velocity and action potential duration to identify regions that tether phase singularities. The SVM identified regions of tissue that could support tethering with 91% accuracy. This accuracy increased to 95% when the SVM was also trained on surface area. CONCLUSION: In a virtual patient cohort, local tissue properties, that can be measured (CV) or estimated (APD; using effective refractory period as a surrogate) clinically, identified regions of tissue that tether phase singularities. Combing CV and APD with atrial surface area further improved the accuracy in identifying regions that tether phase singularities.


Assuntos
Fibrilação Atrial , Potenciais de Ação , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Átrios do Coração/cirurgia , Humanos , Aprendizado de Máquina
4.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190335, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448070

RESUMO

Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiologia , Modelos Cardiovasculares , Incerteza , Coração/fisiopatologia , Humanos , Miocárdio/citologia , Miocárdio/patologia
5.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190345, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448072

RESUMO

In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GPs) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian process manifold interpolation (GPMI) method accounts for the topology of the atrium, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Função Atrial , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Distribuição Normal , Probabilidade
6.
J Cardiovasc Electrophysiol ; 30(9): 1416-1427, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111557

RESUMO

BACKGROUND: The multiple wavelets and functional re-entry hypotheses are mechanistic theories to explain atrial fibrillation (AF). If valid, a chamber's ability to support AF should depend upon the left atrial size, conduction velocity (CV), and refractoriness. Measurement of these parameters could provide a new therapeutic target for AF. We investigated the relationship between left atrial effective conducting size (LAECS ), a function of area, CV and refractoriness, and AF vulnerability in patients undergoing AF ablation. METHODS AND RESULTS: Activation mapping was performed in patients with paroxysmal (n = 21) and persistent AF (n = 18) undergoing pulmonary vein isolation. Parameters used for calculating LAECS were: (a) left atrial body area (A); (b) effective refractory period (ERP); and (c) total activation time (T). Global CV was estimated as √A/T . Effective atrial conducting size was calculated as LAECS=A/(CV×ERP) . Post ablation, AF inducibility testing was performed. The critical LAECS required for multiple wavelet termination was determined from computational modeling. LAECS was greater in patients with persistent vs paroxysmal AF (4.4 ± 2.0 cm vs 3.2 ± 1.4 cm; P = .049). AF was inducible in 14/39 patients. LAECS was greater in AF-inducible patients (4.4 ± 1.8 cm vs 3.3 ± 1.7 cm; P = .035, respectively). The difference in LAECS between inducible and noninducible patients was significant in patients with persistent (P = .0046) but not paroxysmal AF (P = .6359). Computational modeling confirmed that LAECS > 4 cm was required for continuation of AF. CONCLUSIONS: LAECS measured post ablation was associated with AF inducibility in patients with persistent, but not paroxysmal AF. These data support a role for this method in electrical substrate assessment in AF patients.


Assuntos
Fibrilação Atrial/cirurgia , Função do Átrio Esquerdo , Ablação por Cateter , Modelos Cardiovasculares , Veias Pulmonares/cirurgia , Análise de Ondaletas , Potenciais de Ação , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Ablação por Cateter/efeitos adversos , Simulação por Computador , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Veias Pulmonares/fisiopatologia , Recidiva , Período Refratário Eletrofisiológico , Fatores de Tempo , Resultado do Tratamento
7.
PLoS Comput Biol ; 14(5): e1006166, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795549

RESUMO

Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success.


Assuntos
Fibrilação Atrial/fisiopatologia , Simulação por Computador , Fibrose/fisiopatologia , Modelos Cardiovasculares , Veias Pulmonares/fisiopatologia , Potenciais de Ação/fisiologia , Eletrofisiologia Cardíaca , Ablação por Cateter , Átrios do Coração/fisiopatologia , Humanos
8.
J Mol Cell Cardiol ; 119: 155-164, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29746849

RESUMO

Fibrillation is the most common arrhythmia observed in clinical practice. Understanding of the mechanisms underlying its initiation and maintenance remains incomplete. Functional re-entries are potential drivers of the arrhythmia. Two main concepts are still debated, the "leading circle" and the "spiral wave or rotor" theories. The homogeneous subclone of the HL1 atrial-derived cardiomyocyte cell line, HL1-6, spontaneously exhibits re-entry on a microscopic scale due to its slow conduction velocity and the presence of triggers, making it possible to examine re-entry at the cellular level. We therefore investigated the re-entry cores in cell monolayers through the use of fluorescence optical mapping at high spatiotemporal resolution in order to obtain insights into the mechanisms of re-entry. Re-entries in HL1-6 myocytes required at least two triggers and a minimum colony area to initiate (3.5 to 6.4 mm2). After electrical activity was completely stopped and re-started by varying the extracellular K+ concentration, re-entries never returned to the same location while 35% of triggers re-appeared at the same position. A conduction delay algorithm also allows visualisation of the core of the re-entries. This work has revealed that the core of re-entries is conduction blocks constituted by lines and/or groups of cells rather than the round area assumed by the other concepts of functional re-entry. This highlights the importance of experimentation at the microscopic level in the study of re-entry mechanisms.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/citologia , Animais , Fibrilação Atrial/fisiopatologia , Linhagem Celular , Átrios do Coração/citologia , Átrios do Coração/fisiopatologia , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Codorniz
9.
J Cardiovasc Electrophysiol ; 29(1): 115-126, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091329

RESUMO

BACKGROUND: Models of cardiac arrhythmogenesis predict that nonuniformity in repolarization and/or depolarization promotes ventricular fibrillation and is modulated by autonomic tone, but this is difficult to evaluate in patients. We hypothesize that such spatial heterogeneities would be detected by noninvasive ECG imaging (ECGi) in sudden cardiac death (SCD) survivors with structurally normal hearts under physiological stress. METHODS: ECGi was applied to 11 SCD survivors, 10 low-risk Brugada syndrome patients (BrS), and 10 controls undergoing exercise treadmill testing. ECGi provides whole heart activation maps and >1,200 unipolar electrograms over the ventricular surface from which global dispersion of activation recovery interval (ARI) and regional delay in conduction were determined. These were used as surrogates for spatial heterogeneities in repolarization and depolarization. Surface ECG markers of dispersion (QT and Tpeak-end intervals) were also calculated for all patients for comparison. RESULTS: Following exertion, the SCD group demonstrated the largest increase in ARI dispersion compared to BrS and control groups (13 ± 8 ms vs. 4 ± 7 ms vs. 4 ± 5 ms; P = 0.009), with baseline dispersion being similar in all groups. In comparison, surface ECG markers of dispersion of repolarization were unable to discriminate between the groups at baseline or following exertion. Spatial heterogeneities in conduction were also present following exercise but were not significantly different between SCD survivors and the other groups. CONCLUSION: Increased dispersion of repolarization is apparent during physiological stress in SCD survivors and is detectable with ECGi but not with standard ECG parameters. The electrophysiological substrate revealed by ECGi could be the basis of alternative risk-stratification techniques.


Assuntos
Potenciais de Ação , Mapeamento Potencial de Superfície Corporal , Morte Súbita Cardíaca/etiologia , Teste de Esforço , Exercício Físico , Sistema de Condução Cardíaco/fisiopatologia , Estresse Fisiológico , Fibrilação Ventricular/diagnóstico , Adulto , Idoso , Morte Súbita Cardíaca/prevenção & controle , Técnicas Eletrofisiológicas Cardíacas , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo , Fibrilação Ventricular/complicações , Fibrilação Ventricular/mortalidade , Fibrilação Ventricular/fisiopatologia
10.
Europace ; 20(suppl_3): iii55-iii68, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476055

RESUMO

AIMS: Treatments for persistent atrial fibrillation (AF) offer limited efficacy. One potential strategy aims to return the right atrium (RA) to sinus rhythm (SR) by ablating interatrial connections (IAC) to isolate the atria, but there is limited clinical data to evaluate this ablation approach. We aimed to use simulation to evaluate and predict patient-specific suitability for ablation of IAC to treat AF. METHODS AND RESULTS: Persistent AF was simulated in 12 patient-specific geometries, incorporating electrophysiological heterogeneity and fibres, with IAC at Bachmann's bundle, the coronary sinus, and fossa ovalis. Simulations were performed to test the effect of left atrial (LA)-to-RA frequency gradient and fibrotic remodelling on IAC ablation efficacy. During AF, we simulated ablation of one, two, or all three IAC, with or without pulmonary vein isolation and determined if this altered or terminated the arrhythmia. For models without structural remodelling, ablating all IAC terminated RA arrhythmia in 83% of cases. Models with the LA-to-RA frequency gradient removed had an increased success rate (100% success). Ablation of IACs is less effective in cases with fibrotic remodelling (interstitial fibrosis 50% success rate; combination remodelling 67%). Mean number of phase singularities in the RA was higher pre-ablation for IAC failure (success 0.6 ± 0.8 vs. failure 3.2 ± 2.5, P < 0.001). CONCLUSION: This simulation study predicts that IAC ablation is effective in returning the RA to SR for many cases. Patient-specific modelling approaches have the potential to stratify patients prior to ablation by predicting if drivers are located in the LA or RA. We present a platform for predicting efficacy and informing patient selection for speculative treatments.


Assuntos
Potenciais de Ação , Fibrilação Atrial/cirurgia , Função do Átrio Esquerdo , Função do Átrio Direito , Ablação por Cateter , Átrios do Coração/cirurgia , Frequência Cardíaca , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Ablação por Cateter/efeitos adversos , Tomada de Decisão Clínica , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Seleção de Pacientes , Valor Preditivo dos Testes , Fatores de Tempo , Resultado do Tratamento
11.
Europace ; 20(suppl_3): iii3-iii15, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476057

RESUMO

AIMS: Atrial fibrillation (AF) wavefront dynamics are complex and difficult to interpret, contributing to uncertainty about the mechanisms that maintain AF. We aimed to investigate the interplay between rotors, wavelets, and focal sources during fibrillation. METHODS AND RESULTS: Arrhythmia wavefront dynamics were analysed for four optically mapped canine cholinergic AF preparations. A bilayer computer model was tuned to experimental preparations, and varied to have (i) fibrosis in both layers or the epicardium only, (ii) different spatial acetylcholine distributions, (iii) different intrinsic action potential duration between layers, and (iv) varied interlayer connectivity. Phase singularities (PSs) were identified and tracked over time to identify rotational drivers. New focal wavefronts were identified using phase contours. Phase singularity density and new wavefront locations were calculated during AF. There was a single dominant mechanism for sustaining AF in each of the preparations, either a rotational driver or repetitive new focal wavefronts. High-density PS sites existed preferentially around the pulmonary vein junctions. Three of the four preparations exhibited stable preferential sites of new wavefronts. Computational simulations predict that only a small number of connections are functionally important in sustaining AF, with new wavefront locations determined by the interplay between fibrosis distribution, acetylcholine concentration, and heterogeneity in repolarization within layers. CONCLUSION: We were able to identify preferential sites of new wavefront initiation and rotational activity, in order to determine the mechanisms sustaining AF. Electrical measurements should be interpreted differently according to whether they are endocardial or epicardial recordings.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Função do Átrio Esquerdo , Fibras Colinérgicas , Átrios do Coração/inervação , Frequência Cardíaca , Animais , Fibrilação Atrial/diagnóstico , Remodelamento Atrial , Simulação por Computador , Modelos Animais de Doenças , Cães , Fibrose , Átrios do Coração/patologia , Modelos Cardiovasculares , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
12.
Europace ; 18(suppl 4): iv146-iv155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28011842

RESUMO

AIMS: Catheter ablation is an effective technique for terminating atrial arrhythmia. However, given a high atrial fibrillation (AF) recurrence rate, optimal ablation strategies have yet to be defined. Computer modelling can be a powerful aid but modelling of fibrosis, a major factor associated with AF, is an open question. Several groups have proposed methodologies based on imaging data, but no comparison to determine which methodology best corroborates clinically observed reentrant behaviour has been performed. We examined several methodologies to determine the best method for capturing fibrillation dynamics. METHODS AND RESULTS: Patient late gadolinium-enhanced magnetic resonance imaging data were transferred onto a bilayer atrial computer model and used to assign fibrosis distributions. Fibrosis was modelled as conduction disturbances (lower conductivity, edge splitting, or percolation), transforming growth factor-ß1 ionic channel effects, myocyte-fibroblast coupling, and combinations of the preceding. Reentry was induced through pulmonary vein ectopy and the ensuing rotor dynamics characterized. Non-invasive electrocardiographic imaging data of the patients in AF was used for comparison. Electrograms were computed and the fractionation durations measured over the surface. Edge splitting produced more phase singularities from wavebreaks than the other representations. The number of phase singularities seen with percolation was closer to the clinical values. Addition of fibroblast coupling had an organizing effect on rotor dynamics. Simple tissue conductivity changes with ionic changes localized rotors over fibrosis which was not observed with clinical data. CONCLUSION: The specific representation of fibrosis has a large effect on rotor dynamics and needs to be carefully considered for patient specific modelling.


Assuntos
Fibrilação Atrial/diagnóstico , Função Atrial , Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Potenciais de Ação , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Fibrose , Átrios do Coração/patologia , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes , Prognóstico , Processamento de Sinais Assistido por Computador
14.
Heart Rhythm ; 21(6): 752-761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286244

RESUMO

BACKGROUND: Focal and rotational activations have been demonstrated in atrial fibrillation (AF), but their relationship to each other and to structural remodeling remains unclear. OBJECTIVE: The purpose of this study was to assess the relationship of focal and rotational activations to underlying low-voltage zones (LVZs) (<0.5 mV) and to determine whether there was a temporal (≤500 ms) and spatial (≤12 mm) relationship between these activations. METHODS: Patients undergoing catheter ablation for persistent AF were included. All patients underwent pulmonary vein isolation. Unipolar signals were collected to identify focal and rotational activations using a wavefront propagation algorithm. RESULTS: In 40 patients, 105 activations were identified (57 [54.3%] focal; 48 [45.7%] rotational). Rotational activations were co-localized to LVZs (35/48 [72.9%]) whereas focal activations were not (11/57 in LVZ [19.3%]; P <.001). The proportion of the left atrium occupied by LVZs predicted rotational activations occurrence (area under the curve 0.96; 95% confidence interval 0.90-1.00; P <.001). In patients with a relatively healthy atrium, in which the atrium consisted of ≤15% LVZs, only focal activations were identified. Thirty-two of the 35 rotational activations (91.4%) located in LVZs also showed a temporal and spatial relationship to a focal activation. The presence of a LVZ within 12 mm of the focal activation was a strong predictor for whether a paired rotational activation would also occur in that vicinity. CONCLUSION: Rotational activations are largely confined to areas of structural remodeling and have a clear spatial and temporal relationship with focal activations suggesting they are dependent on them. These novel mechanistic observations outline a plausible model for patient-specific mechanisms maintaining AF.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Ablação por Cateter/métodos , Remodelamento Atrial/fisiologia , Veias Pulmonares/fisiopatologia , Veias Pulmonares/cirurgia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Idoso , Seguimentos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38807744

RESUMO

Computational models of cardiac electrophysiology have gradually matured during the past few decades and are now being personalised to provide patient-specific therapy guidance for improving suboptimal treatment outcomes. The predictive features of these personalised electrophysiology models hold the promise of providing optimal treatment planning, which is currently limited in the clinic owing to reliance on a population-based or average patient approach. The generation of a personalised electrophysiology model entails a sequence of steps for which a range of activation mapping, calibration methods and therapy simulation pipelines have been suggested. However, the optimal methods that can potentially constitute a clinically relevant in silico treatment are still being investigated and face limitations, such as uncertainty of electroanatomical data recordings, generation and calibration of models within clinical timelines and requirements to validate or benchmark the recovered tissue parameters. This paper is aimed at reporting techniques on the personalisation of cardiac computational models, with a focus on calibrating cardiac tissue conductivity based on electroanatomical mapping data.

16.
Heart Rhythm ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851622

RESUMO

BACKGROUND: Areas of abnormal or heterogeneous conduction velocity (CV) are important ablation targets for ventricular tachycardias, yet precise assessment of CV in clinical contact mapping remains challenging. Numerous different CV estimation methods have been proposed. OBJECTIVE: This study aimed to compare the automated local activation time (LAT)-independent omnipolar-based CV estimation method termed wave speed (WS) with 4 established LAT-based methods to formally establish the quantitative differences between them. METHODS: High-density contact maps in patients with structurally normal hearts during sinus rhythm (SR) and ventricular ectopy (VE) were retrospectively analyzed. CV was assessed and compared by 5 methods: omnipolar WS, gradient method, planar wavefront fitting, circular wavefront fitting, and radial basis function. CV variations based on electrogram (EGM) type (unipolar, bipolar, and omnipolar), catheter movement, and surrogate markers for catheter contact were analyzed. RESULTS: The study included 23 patients (47.8% male; 45.7 ± 17.3 years) with 22 SR maps (11 left ventricle, 11 right ventricle) and 16 VE maps (9 left ventricle, 7 right ventricle). The WS algorithm yielded statistically significant higher CV estimates in SR (mean, 1.41 ± 0.18 m/s) and VE (mean, 1.23 ± 0.18 m/s) maps compared with all LAT-based estimation methods, with absolute differences ranging from 0.1 m/s to 0.81 m/s. Median pointwise differences in SR and VE between WS and LAT-based methods were high, ranging from 0.55 ± 0.15 m/s (WS vs planar wavefront fitting) to 0.67 ± 0.16 m/s (WS vs radial basis function). For LAT-based methods, use of unipolar EGMs yielded significantly higher CV estimates than bipolar or omnipolar EGMs in SR. CONCLUSION: The CV estimation method has an important, statistically significant impact on ventricular CV measurements. Future work will focus on how these differences affect identification of pathologic conduction slowing in scar-related substrate.

17.
Front Cardiovasc Med ; 11: 1359715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596691

RESUMO

Background: A reduced left atrial (LA) strain correlates with the presence of atrial fibrillation (AF). Conventional atrial strain analysis uses two-dimensional (2D) imaging, which is, however, limited by atrial foreshortening and an underestimation of through-plane motion. Retrospective gated computed tomography (RGCT) produces high-fidelity three-dimensional (3D) images of the cardiac anatomy throughout the cardiac cycle that can be used for estimating 3D mechanics. Its feasibility for LA strain measurement, however, is understudied. Aim: The aim of this study is to develop and apply a novel workflow to estimate 3D LA motion and calculate the strain from RGCT imaging. The utility of global and regional strains to separate heart failure in patients with reduced ejection fraction (HFrEF) with and without AF is investigated. Methods: A cohort of 30 HFrEF patients with (n = 9) and without (n = 21) AF underwent RGCT prior to cardiac resynchronisation therapy. The temporal sparse free form deformation image registration method was optimised for LA feature tracking in RGCT images and used to estimate 3D LA endocardial motion. The area and fibre reservoir strains were calculated over the LA body. Universal atrial coordinates and a human atrial fibre atlas enabled the regional strain calculation and the fibre strain calculation along the local myofibre orientation, respectively. Results: It was found that global reservoir strains were significantly reduced in the HFrEF + AF group patients compared with the HFrEF-only group patients (area strain: 11.2 ± 4.8% vs. 25.3 ± 12.6%, P = 0.001; fibre strain: 4.5 ± 2.0% vs. 15.2 ± 8.8%, P = 0.001), with HFrEF + AF patients having a greater regional reservoir strain dyssynchrony. All regional reservoir strains were reduced in the HFrEF + AF patient group, in whom the inferior wall strains exhibited the most significant differences. The global reservoir fibre strain and LA volume + posterior wall reservoir fibre strain exceeded LA volume alone and 2D global longitudinal strain (GLS) for AF classification (area-under-the-curve: global reservoir fibre strain: 0.94 ± 0.02, LA volume + posterior wall reservoir fibre strain: 0.95 ± 0.02, LA volume: 0.89 ± 0.03, 2D GLS: 0.90 ± 0.03). Conclusion: RGCT enables 3D LA motion estimation and strain calculation that outperforms 2D strain metrics and LA enlargement for AF classification. Differences in regional LA strain could reflect regional myocardial properties such as atrial fibrosis burden.

18.
Circ Arrhythm Electrophysiol ; 17(7): e012684, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38939983

RESUMO

BACKGROUND: Atrial fibrillation (AF) and ventricular fibrillation (VF) episodes exhibit varying durations, with some spontaneously ending quickly while others persist. A quantitative framework to explain episode durations remains elusive. We hypothesized that observable self-terminating AF and VF episode lengths, whereby durations are known, would conform with a power law based on the ratio of system size and correlation length ([Formula: see text]. METHODS: Using data from computer simulations (2-dimensional sheet and 3-dimensional left-atrial), human ischemic VF recordings (256-electrode sock, n=12 patients), and human AF recordings (64-electrode basket-catheter, n=9 patients; 16-electrode high definition-grid catheter, n=42 patients), conformance with a power law was assessed using the Akaike information criterion, Bayesian information criterion, coefficient of determination (R2, significance=P<0.05) and maximum likelihood estimation. We analyzed fibrillatory episode durations and [Formula: see text], computed by taking the ratio between system size ([Formula: see text], chamber/simulation size) and correlation length (xi, estimated from pairwise correlation coefficients over electrode/node distance). RESULTS: In all computer models, the relationship between episode durations and [Formula: see text] was conformant with a power law (Aliev-Panfilov R2: 0.90, P<0.001; Courtemanche R2: 0.91, P<0.001; Luo-Rudy R2: 0.61, P<0.001). Observable clinical AF/VF durations were also conformant with a power law relationship (VF R2: 0.86, P<0.001; AF basket R2: 0.91, P<0.001; AF grid R2: 0.92, P<0.001). [Formula: see text] also differentiated between self-terminating and sustained episodes of AF and VF (P<0.001; all systems), as well as paroxysmal versus persistent AF (P<0.001). In comparison, other electrogram metrics showed no statistically significant differences (dominant frequency, Shannon Entropy, mean voltage, peak-peak voltage; P>0.05). CONCLUSIONS: Observable fibrillation episode durations are conformant with a power law based on system size and correlation length.


Assuntos
Fibrilação Atrial , Fibrilação Ventricular , Humanos , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/diagnóstico , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico , Fatores de Tempo , Masculino , Feminino , Potenciais de Ação , Simulação por Computador , Frequência Cardíaca , Modelos Cardiovasculares , Pessoa de Meia-Idade , Sistema de Condução Cardíaco/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Idoso , Teorema de Bayes
19.
J Am Heart Assoc ; 13(3): e031489, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240222

RESUMO

BACKGROUND: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS. METHODS AND RESULTS: In this prospective, multicenter, observational study, CMR imaging was performed within 3 months of ESUS. All scans were reported according to standard clinical practice. A new clinical finding was defined as one not previously identified through prior clinical evaluation. A clinically significant finding was defined as one resulting in further investigation, follow-up, or treatment. A change in patient care was defined as initiation of medical, interventional, surgical, or palliative care. From 102 patients recruited, 96 underwent CMR imaging. One or more new clinical findings were observed in 59 patients (61%). New findings were clinically significant in 48 (81%) of these patients. Of 40 patients with a new clinically significant cardiac finding, 21 (53%) experienced a change in care (medical therapy, n=15; interventional/surgical procedure, n=6). In 12 patients with a new clinically significant extracardiac finding, 6 (50%) experienced a change in care (medical therapy, n=4; palliative care, n=2). CONCLUSIONS: CMR imaging identifies new clinically significant cardiac and noncardiac findings in half of patients with recent ESUS. Advanced cardiovascular screening should be considered in patients with ESUS. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04555538.


Assuntos
AVC Embólico , Embolia Intracraniana , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Prevalência , Estudos Prospectivos , Imageamento por Ressonância Magnética , Embolia Intracraniana/diagnóstico por imagem , Embolia Intracraniana/epidemiologia , Fatores de Risco
20.
ArXiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36776816

RESUMO

Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA