Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31666377

RESUMO

The Nanoarchaeota are small cells with reduced genomes that are found attached to and dependent on a second archaeal cell for their growth and replication. Initially found in marine hydrothermal environments and subsequently in terrestrial geothermal hot springs, the Nanoarchaeota species that have been described are obligate ectobionts, each with a different host species. However, no viruses had been described that infect the Nanoarchaeota. Here, we identify a virus infecting Nanoarchaeota by the use of a combination of viral metagenomic and bioinformatic approaches. This virus, tentatively named Nanoarchaeota Virus 1 (NAV1), consists of a 35.6-kb circular DNA genome coding for 52 proteins. We further demonstrate that this virus is broadly distributed among Yellowstone National Park hot springs. NAV1 is one of the first examples of a virus infecting a single-celled organism that is itself an ectobiont of another single-celled organism.IMPORTANCE Here, we present evidence of the first virus found to infect Nanoarchaeota, a symbiotic archaean found in acidic hot springs of Yellowstone National Park, USA. Using culture-independent techniques, we provide the genome sequence and identify the archaeal host species of a novel virus, NAV1. NAV1 is the first example of a virus infecting an archaeal species that is itself an obligate symbiont and dependent on a second host organism for growth and cellular replication. On the basis of annotation of the NAV1 genome, we propose that this virus is the founding member of a new viral family, further demonstrating the remarkable genetic diversity of archaeal viruses.


Assuntos
Vírus de Archaea/isolamento & purificação , Vírus de Archaea/fisiologia , Fontes Termais/virologia , Nanoarchaeota/virologia , Vírus de Archaea/classificação , Vírus de Archaea/genética , Sequência de Bases , Vírus de DNA/genética , Genoma Viral , Especificidade de Hospedeiro , Metagenoma , Metagenômica , Nanoarchaeota/genética , Parques Recreativos , Simbiose , Estados Unidos
2.
Appl Environ Microbiol ; 81(22): 7860-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341207

RESUMO

Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.


Assuntos
Fontes Termais/microbiologia , Nanoarchaeota/fisiologia , Nanoarchaeota/virologia , Sulfolobales/fisiologia , Fontes Termais/virologia , Metagenômica , Nanoarchaeota/classificação , Nanoarchaeota/genética , Parques Recreativos , RNA Ribossômico 16S/genética , Análise de Célula Única , Sulfolobales/genética , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA