Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(5): 860-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37077023

RESUMO

The clinical assessment of patients with disorders of consciousness (DoC) relies on the observation of behavioural responses to standardised sensory stimulation. However, several medical comorbidities may directly impair the production of reproducible and appropriate responses, thus reducing the sensitivity of behaviour-based diagnoses. One such comorbidity is akinetic mutism (AM), a rare neurological syndrome characterised by the inability to initiate volitional motor responses, sometimes associated with clinical presentations that overlap with those of DoC. In this paper, we describe the case of a patient with large bilateral mesial frontal lesions, showing prolonged behavioural unresponsiveness and severe disorganisation of electroencephalographic (EEG) background, compatible with a vegetative state/unresponsive wakefulness syndrome (VS/UWS). By applying an unprecedented multimodal battery of advanced imaging and electrophysiology-based techniques (AIE) encompassing spontaneous EEG, evoked potentials, event-related potentials, transcranial magnetic stimulation combined with EEG and structural and functional MRI, we provide the following: (i) a demonstration of the preservation of consciousness despite unresponsiveness in the context of AM, (ii) a plausible neurophysiological explanation for behavioural unresponsiveness and its subsequent recovery during rehabilitation stay and (iii) novel insights into the relationships between DoC, AM and parkinsonism. The present case offers proof-of-principle evidence supporting the clinical utility of a multimodal hierarchical workflow that combines AIEs to detect covert signs of consciousness in unresponsive patients.


Assuntos
Afasia Acinética , Terapia por Estimulação Elétrica , Humanos , Afasia Acinética/diagnóstico , Inconsciência , Estado de Consciência , Eletroencefalografia
2.
Eur J Neurosci ; 59(5): 934-947, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440949

RESUMO

The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.


Assuntos
Eletroencefalografia , Estado Vegetativo Persistente , Humanos , Estado Vegetativo Persistente/diagnóstico , Eletroencefalografia/métodos , Estado de Consciência , Vigília/fisiologia , Transtornos da Consciência/diagnóstico
3.
Hum Brain Mapp ; 45(6): e26679, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647038

RESUMO

Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, ß1, and ß2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased ß1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and ß band oscillations and may have relevance for pain therapies.


Assuntos
Dor Aguda , Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Dor Aguda/fisiopatologia , Dor Aguda/terapia , Adulto , Adulto Jovem , Eletroencefalografia/métodos , Limiar da Dor/fisiologia , Temperatura Alta , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiopatologia
4.
Cereb Cortex ; 33(18): 9986-9996, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522261

RESUMO

Pain-related depression of corticomotor excitability has been explored using transcranial magnetic stimulation-elicited motor-evoked potentials. Transcranial magnetic stimulation-electroencephalography now enables non-motor area cortical excitability assessments, offering novel insights into cortical excitability changes during pain states. Here, pain-related cortical excitability changes were explored in the dorsolateral prefrontal cortex and primary motor cortex (M1). Cortical excitability was recorded in 24 healthy participants before (Baseline), during painful heat (Acute Pain), and non-noxious warm (Warm) stimulation at the right forearm in a randomized sequence, followed by a pain-free stimulation measurement. Local cortical excitability was assessed as the peak-to-peak amplitude of early transcranial magnetic stimulation evoked potential, whereas global-mean field power measured the global excitability. Relative to the Baseline, Acute Pain decreased the peak-to-peak amplitude in M1 and dorsolateral prefrontal cortex compared with Warm (both P < 0.05). A reduced global-mean field power was only found in M1 during Acute Pain compared with Warm (P = 0.003). Participants with the largest reduction in local cortical excitability under Acute Pain showed a negative correlation between dorsolateral prefrontal cortex and M1 local cortical excitability (P = 0.006). Acute experimental pain drove differential pain-related effects on local and global cortical excitability changes in motor and non-motor areas at a group level while also revealing different interindividual patterns of cortical excitability changes, which can be explored when designing personalized treatment plans.


Assuntos
Dor Aguda , Córtex Motor , Humanos , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana , Medição da Dor , Eletroencefalografia
5.
Cereb Cortex ; 33(11): 7193-7210, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36977648

RESUMO

Neurophysiological markers can overcome the limitations of behavioural assessments of Disorders of Consciousness (DoC). EEG alpha power emerged as a promising marker for DoC, although long-standing literature reported alpha power being sustained during anesthetic-induced unconsciousness, and reduced during dreaming and hallucinations. We hypothesized that EEG power suppression caused by severe anoxia could explain this conflict. Accordingly, we split DoC patients (n = 87) in postanoxic and non-postanoxic cohorts. Alpha power was suppressed only in severe postanoxia but failed to discriminate un/consciousness in other aetiologies. Furthermore, it did not generalize to an independent reference dataset (n = 65) of neurotypical, neurological, and anesthesia conditions. We then investigated EEG spatio-spectral gradients, reflecting anteriorization and slowing, as alternative markers. In non-postanoxic DoC, these features, combined in a bivariate model, reliably stratified patients and indexed consciousness, even in unresponsive patients identified as conscious by an independent neural marker (the Perturbational Complexity Index). Crucially, this model optimally generalized to the reference dataset. Overall, alpha power does not index consciousness; rather, its suppression entails diffuse cortical damage, in postanoxic patients. As an alternative, EEG spatio-spectral gradients, reflecting distinct pathophysiological mechanisms, jointly provide a robust, parsimonious, and generalizable marker of consciousness, whose clinical application may guide rehabilitation efforts.


Assuntos
Anestesia , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência , Eletroencefalografia , Inconsciência/induzido quimicamente
6.
Neuroimage ; 277: 120264, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399931

RESUMO

During development, the brain undergoes radical structural and functional changes following a posterior-to-anterior gradient, associated with profound changes of cortical electrical activity during both wakefulness and sleep. However, a systematic assessment of the developmental effects on aperiodic EEG activity maturation across vigilance states is lacking, particularly regarding its topographical aspects. Here, in a population of 160 healthy infants, children and teenagers (from 2 to 17 years, 10 subjects for each year), we investigated the development of aperiodic EEG activity in wakefulness and sleep. Specifically, we parameterized the shape of the aperiodic background of the EEG Power Spectral Density (PSD) by means of the spectral exponent and offset; the exponent reflects the rate of exponential decay of power over increasing frequencies and the offset reflects an estimate of the y-intercept of the PSD. We found that sleep and development caused the EEG-PSD to rotate over opposite directions: during wakefulness the PSD showed a flatter decay and reduced offset over development, while during sleep it showed a steeper decay and a higher offset as sleep becomes deeper. During deep sleep (N2, N3) only the spectral offset decreased over age, indexing a broad-band voltage reduction. As a result, the difference between values in deep sleep and those in both light sleep (N1) and wakefulness increased with age, suggesting a progressive differentiation of wakefulness from sleep EEG activity, most prominent over the frontal regions, the latest to complete maturation. Notably, the broad-band spectral exponent values during deep sleep stages were entirely separated from wakefulness values, consistently across developmental ages and in line with previous findings in adults. Concerning topographical development, the location showing the steepest PSD decay and largest offset shifted from posterior to anterior regions with age. This shift, particularly evident during deep sleep, paralleled the migration of sleep slow wave activity and was consistent with neuroanatomical and cognitive development. Overall, aperiodic EEG activity distinguishes wakefulness from sleep regardless of age; while, during development, it reveals a postero-anterior topographical maturation and a progressive differentiation of wakefulness from sleep. Our study could help to interpret changes due to pathological conditions and may elucidate the neurophysiological processes underlying the development of wakefulness and sleep.


Assuntos
Sono , Vigília , Adulto , Criança , Lactente , Adolescente , Humanos , Vigília/fisiologia , Sono/fisiologia , Eletroencefalografia , Fases do Sono/fisiologia , Encéfalo/fisiologia
7.
Epilepsia ; 64(6): e118-e126, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994648

RESUMO

Focal epileptic seizures are characterized by abnormal neuronal discharges that can spread to other cortical areas and interfere with brain activity, thereby altering the patient's experience and behavior. The origin of these pathological neuronal discharges encompasses various mechanisms that converge toward similar clinical manifestations. Recent studies have suggested that medial temporal lobe (MTL) and neocortical (NC) seizures are often underpinned by two characteristic onset patterns, which, respectively, affect and spare synaptic transmission in cortical slices. However, these synaptic alterations and their effects have never been confirmed or studied in intact human brains. To fill this gap, we here evaluate whether responsiveness of MTL and NC are differentially affected by focal seizures, using a unique data set of cortico-cortical evoked potentials (CCEPs) collected during seizures triggered by single-pulse electrical stimulation (SPES). We find that responsiveness is abruptly reduced by the onset of MTL seizures, despite increased spontaneous activity, whereas it is preserved in the case of NC seizures. The present results provide an extreme example of dissociation between responsiveness and activity and show that brain networks are diversely affected by the onset of MTL and NC seizures, thus extending at the whole brain level the evidence of synaptic alteration found in vitro.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Neocórtex , Humanos , Convulsões , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos
8.
Neurocrit Care ; 39(3): 578-585, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606737

RESUMO

BACKGROUND: Electroencephalography (EEG) has long been recognized as an important tool in the investigation of disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic information in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Society's Curing Coma Campaign convened nine working groups composed of experts in the field to construct common data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working group. METHODS: After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into "disease core," "basic," "supplemental," and "exploratory." Key EEG design elements, defined as concepts that pertained to a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were not classified as CDEs. RESULTS: After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using this categorical framework, two case report forms were generated by the working group. CONCLUSIONS: Adherence to the recommendations outlined by the electrophysiology working group in the resting state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an international level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating further advancement in the realm of DoC research.


Assuntos
Pesquisa Biomédica , Elementos de Dados Comuns , Humanos , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/terapia , Coleta de Dados , Eletrofisiologia
9.
Neurocrit Care ; 38(3): 584-590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029315

RESUMO

Early reemergence of consciousness predicts long-term functional recovery for patients with severe brain injury. However, tools to reliably detect consciousness in the intensive care unit are lacking. Transcranial magnetic stimulation electroencephalography has the potential to detect consciousness in the intensive care unit, predict recovery, and prevent premature withdrawal of life-sustaining therapy.


Assuntos
Estado de Consciência , Estimulação Magnética Transcraniana , Humanos , Estado de Consciência/fisiologia , Eletroencefalografia , Unidades de Terapia Intensiva , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/terapia
10.
Behav Brain Sci ; 45: e54, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35319430

RESUMO

Interpreting empirical measures of integration and differentiation as indices of cortical performance and memory consolidation during wakefulness rather than consciousness per se is inconsistent with the literature. Recent studies show that these theory-inspired measures can dissociate from such processes and reliably index the brain's capacity for experience. We consider this as a positive trend in consciousness research.


Assuntos
Encéfalo , Estado de Consciência , Humanos , Vigília
11.
Brain ; 143(12): 3672-3684, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188680

RESUMO

The functional consequences of focal brain injury are thought to be contingent on neuronal alterations extending beyond the area of structural damage. This phenomenon, also known as diaschisis, has clinical and metabolic correlates but lacks a clear electrophysiological counterpart, except for the long-standing evidence of a relative EEG slowing over the injured hemisphere. Here, we aim at testing whether this EEG slowing is linked to the pathological intrusion of sleep-like cortical dynamics within an awake brain. We used a combination of transcranial magnetic stimulation and electroencephalography (TMS/EEG) to study cortical reactivity in a cohort of 30 conscious awake patients with chronic focal and multifocal brain injuries of ischaemic, haemorrhagic and traumatic aetiology. We found that different patterns of cortical reactivity typically associated with different brain states (coma, sleep, wakefulness) can coexist within the same brain. Specifically, we detected the occurrence of prominent sleep-like TMS-evoked slow waves and off-periods-reflecting transient suppressions of neuronal activity-in the area surrounding focal cortical injuries. These perilesional sleep-like responses were associated with a local disruption of signal complexity whereas complex responses typical of the awake brain were present when stimulating the contralesional hemisphere. These results shed light on the electrophysiological properties of the tissue surrounding focal brain injuries in humans. Perilesional sleep-like off-periods can disrupt network activity but are potentially reversible, thus representing a principled read-out for the neurophysiological assessment of stroke patients, as well as an interesting target for rehabilitation.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Córtex Cerebral/fisiopatologia , Sono , Vigília , Idoso , Lesões Encefálicas Traumáticas/psicologia , Estudos de Coortes , Estado de Consciência , Eletroencefalografia , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia , Estimulação Magnética Transcraniana
12.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801689

RESUMO

As widely acknowledged, 40-50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS-RAF-MEK-ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.


Assuntos
Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/fisiologia , Neoplasias Cutâneas/genética , Antineoplásicos/administração & dosagem , Ciclo Celular , Quimioterapia Adjuvante , Ensaios Clínicos como Assunto , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Imunoterapia , Sistema de Sinalização das MAP Quinases , Masculino , Oncologia/tendências , Melanoma/metabolismo , Mutação , Metástase Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Recidiva , Neoplasias Cutâneas/metabolismo
13.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281219

RESUMO

The cure rate of germ cell tumours (GCTs) has significantly increased from the late 1970s since the introduction of cisplatin-based therapy, which to date remains the milestone for GCTs treatment. The exquisite cisplatin sensitivity has been mainly explained by the over-expression in GCTs of wild-type TP53 protein and the lack of TP53 somatic mutations; however, several other mechanisms seem to be involved, many of which remain still elusive. The findings about the role of TP53 in platinum-sensitivity and resistance, as well as the reported evidence of second cancers (SCs) in GCT patients treated only with surgery, suggesting a spectrum of cancer predisposing syndromes, highlight the need for a deepened understanding of the role of TP53 in GCTs. In the following report we explore the complex role of TP53 in GCTs cisplatin-sensitivity and resistance mechanisms, passing through several recent genomic studies, as well as its role in GCT patients with SCs, going through our experience of Center of reference for both GCTs and cancer predisposing syndromes.


Assuntos
Genes p53 , Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/secundário , Proteína Supressora de Tumor p53/genética
14.
Cancer Metastasis Rev ; 38(1-2): 307-313, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30003458

RESUMO

The proportion of patients with metastatic colorectal cancer (mCRC) receiving second or further lines of treatment has not been widely studied. To shed light on this issue, we retrospectively analysed the treatments administered for metastatic disease, and investigated prognostic factors after a diagnosis of metastases, in a consecutive cohort of mCRC patients. Three hundred forty-six mCRC patients were enrolled: 173 were stage II or III (metachronous group), and 173 stage IV (synchronous group) at diagnosis. Survival was calculated between the date of metastatic disease and the date of death or last follow-up. Patients with synchronous lesions more frequently had multiple disease sites, peritoneal carcinomatosis and massive liver deposits, whereas significantly more patients with metachronous lesions developed lung metastases as the sole disease site. 97.4% patients received at least one, 62.4% two, 41.9% three and 23.7% four treatment lines. Patients with metachronous metastases more frequently underwent surgery of metastases in first-line treatment (48.5 versus 24.8%), and more of them were progression-free at the time of the analysis (44 versus 34.9%). At univariate analysis, age > 70 years, multiple disease sites and peritoneal carcinomatosis were associated with significantly decreased survival, whereas surgery of metastases and isolated lung metastases predicted better survival. At multivariate analysis, only peritoneal carcinomatosis and surgery of metastases independently affected survival. The percentage of patients who received an active treatment decreased going from first- to fourth-line treatment. However, the proportion of patients who received efficacious treatment in advanced line remained high. Surgery of metastases was the most important prognostic factors.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/cirurgia , Idoso , Quimioterapia Adjuvante , Estudos de Coortes , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos
15.
Neuroimage ; 189: 631-644, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639334

RESUMO

Despite the absence of responsiveness during anesthesia, conscious experience may persist. However, reliable, easily acquirable and interpretable neurophysiological markers of the presence of consciousness in unresponsive states are still missing. A promising marker is based on the decay-rate of the power spectral density (PSD) of the resting EEG. We acquired resting electroencephalogram (EEG) in three groups of healthy participants (n = 5 each), before and during anesthesia induced by either xenon, propofol or ketamine. Dosage of each anesthetic agent was tailored to yield unresponsiveness (Ramsay score = 6). Delayed subjective reports assessed whether conscious experience was present ('Conscious report') or absent/inaccessible to recall ('No Report'). We estimated the decay of the PSD of the resting EEG-after removing oscillatory peaks-via the spectral exponent ß, for a broad band (1-40 Hz) and narrower sub-bands (1-20 Hz, 20-40 Hz). Within-subject anesthetic changes in ß were assessed. Furthermore, based on ß, 'Conscious report' states were discriminated against 'no report' states. Finally, we evaluated the correlation of the resting spectral exponent with a recently proposed index of consciousness, the Perturbational Complexity Index (PCI), derived from a previous TMS-EEG study. The spectral exponent of the resting EEG discriminated states in which consciousness was present (wakefulness, ketamine) from states where consciousness was reduced or abolished (xenon, propofol). Loss of consciousness substantially decreased the (negative) broad-band spectral exponent in each subject undergoing xenon or propofol anesthesia-indexing an overall steeper PSD decay. Conversely, ketamine displayed an overall PSD decay similar to that of wakefulness-consistent with the preservation of consciousness-yet it showed a flattening of the decay in the high-frequencies (20-40 Hz)-consistent with its specific mechanism of action. The spectral exponent was highly correlated to PCI, corroborating its interpretation as a marker of the presence of consciousness. A steeper PSD of the resting EEG reliably indexed unconsciousness in anesthesia, beyond sheer unresponsiveness.


Assuntos
Anestésicos Gerais/farmacologia , Estado de Consciência/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Ketamina/farmacologia , Propofol/farmacologia , Inconsciência/fisiopatologia , Xenônio/farmacologia , Adolescente , Adulto , Ondas Encefálicas/efeitos dos fármacos , Feminino , Humanos , Masculino , Inconsciência/induzido quimicamente , Adulto Jovem
16.
Cereb Cortex ; 28(4): 1132-1140, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184424

RESUMO

Increasing evidence shows that anodal transcranial direct current stimulation (tDCS) enhances cognitive performance in healthy and clinical population. Such facilitation is supposed to be linked to plastic changes at relevant cortical sites. However, direct electrophysiological evidence for this causal relationship is still missing. Here, we show that cognitive enhancement occurring in healthy human subjects during anodal tDCS is affected by ongoing brain activity, increasing cortical excitability of task-related brain networks only, as directly measured by Transcranial Magnetic Stimulation combined with electroencephalography (TMS-EEG). Specifically, TMS-EEG recordings were performed before and after anodal tDCS coupled with a verbal fluency task. To control for effects of tDCS protocol and TMS target location, 3 conditions were assessed: anodal/sham tDCS with TMS over left premotor cortex, anodal tDCS with TMS over left posterior parietal cortex. Modulation of cortical excitability occurred only at left Brodmann's areas 6, 44, and 45, a key network for language production, after anodal tDCS and TMS over the premotor cortex, and was positively correlated to the degree of cognitive enhancement. Our results suggest that anodal tDCS specifically affects task-related functional networks active while delivering stimulation, and this boost of specific cortical circuits is correlated to the observed cognitive enhancement.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Semântica , Estimulação Magnética Transcraniana/métodos , Comportamento Verbal , Adulto Jovem
17.
Neuroimage ; 175: 354-364, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29604455

RESUMO

Lack of sleep has a considerable impact on vigilance: we perform worse, we make more errors, particularly at night, when we should be sleeping. Measures of brain functional connectivity suggest that decrease in vigilance during sleep loss is associated with an impaired cross-talk within the fronto-parietal cortex. However, fronto-parietal effective connectivity, which is more closely related to the causal cross-talk between brain regions, remains unexplored during prolonged wakefulness. In addition, no study has simultaneously investigated brain effective connectivity and wake-related changes in vigilance, preventing the concurrent incorporation of the two aspects. Here, we used electroencephalography (EEG) to record responses evoked by Transcranial Magnetic Stimulation (TMS) applied over the frontal lobe in 23 healthy young men (18-30 yr.), while they simultaneously performed a vigilance task, during 8 sessions spread over 29 h of sustained wakefulness. We assessed Response Scattering (ReSc), an estimate of effective connectivity, as the propagation of TMS-evoked EEG responses over the fronto-parietal cortex. Results disclose a significant change in fronto-parietal ReSc with time spent awake. When focusing on the night-time period, when one should be sleeping, participants with lower fronto-parietal ReSc performed worse on the vigilance task. Conversely, no association was detected during the well-rested, daytime period. Night-time fronto-parietal ReSc also correlated with objective EEG measures of sleepiness and alertness. These changes were not accompanied by variations in fronto-parietal response complexity. These results suggest that decreased brain response propagation within the fronto-parietal cortex is associated to increased vigilance failure during night-time prolonged wakefulness. This study reveals a novel facet of the detrimental effect on brain function of extended night-time waking hours, which is increasingly common in our societies.


Assuntos
Nível de Alerta/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Privação do Sono/fisiopatologia , Vigília/fisiologia , Adolescente , Adulto , Lobo Frontal/fisiopatologia , Humanos , Masculino , Lobo Parietal/fisiopatologia , Estimulação Magnética Transcraniana , Adulto Jovem
18.
Neuroimage ; 163: 1-12, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917695

RESUMO

Brain responses to transcranial magnetic stimulation (TMS) as measured with electroencephalography (EEG) have so far been assessed either by TMS-evoked EEG potentials (TEPs), mostly reflecting phase-locked neuronal activity, or time-frequency-representations (TFRs), reflecting oscillatory power arising from a mixture of both evoked (i.e., phase-locked) and induced (i.e., non-phase-locked) responses. Single-pulse TMS of the human primary motor cortex induces a specific pattern of oscillatory changes, characterized by an early (30-200 ms after TMS) synchronization in the α- and ß-bands over the stimulated sensorimotor cortex and adjacent lateral frontal cortex, followed by a late (200-400 ms) α- and ß-desynchronization over the stimulated and contralateral sensorimotor cortex. As GABAergic inhibition plays an important role in shaping oscillatory brain activity, we sought here to understand if GABAergic inhibition contributes to these TMS-induced oscillations. We tested single oral doses of alprazolam, diazepam, zolpidem (positive modulators of the GABAA receptor), and baclofen (specific GABAB receptor agonist). Diazepam and zolpidem enhanced, and alprazolam tended to enhance while baclofen decreased the early α-synchronization. Alprazolam and baclofen enhanced the early ß-synchronization. Baclofen enhanced the late α-desynchronization, and alprazolam, diazepam and baclofen enhanced the late ß-desynchronization. The observed GABAergic drug effects on TMS-induced α- and ß-band oscillations were not explained by drug-induced changes on corticospinal excitability, muscle response size, or resting-state EEG power. Our results provide first insights into the pharmacological profile of TMS-induced oscillatory responses of motor cortex.


Assuntos
Sincronização Cortical/efeitos dos fármacos , Potencial Evocado Motor/efeitos dos fármacos , Moduladores GABAérgicos/farmacologia , Córtex Motor/efeitos dos fármacos , Adulto , Sincronização Cortical/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
19.
Ann Neurol ; 80(5): 718-729, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717082

RESUMO

OBJECTIVE: Validating objective, brain-based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness-the Perturbational Complexity Index (PCI)-in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). METHODS: The benchmark population encompassed 150 healthy controls and communicative brain-injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). RESULTS: We found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. INTERPRETATION: Given its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high-PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior. Ann Neurol 2016;80:718-729.


Assuntos
Lesões Encefálicas/diagnóstico , Córtex Cerebral/fisiopatologia , Transtornos da Consciência/diagnóstico , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Índice de Gravidade de Doença , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões Encefálicas/complicações , Transtornos da Consciência/classificação , Transtornos da Consciência/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índices de Gravidade do Trauma , Adulto Jovem
20.
Brain Cogn ; 106: 13-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155161

RESUMO

Neuroimaging and electrophysiological studies provide evidence of hemispheric differences in processing faces and, in particular, emotional expressions. However, the timing of emotion representation in the right and left hemisphere is still unclear. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) was used to explore cortical responsiveness during behavioural tasks requiring processing of either identity or expression of faces. Single-pulse TMS was delivered 100ms after face onset over the medial prefrontal cortex (mPFC) while continuous EEG was recorded using a 60-channel TMS-compatible amplifier; right premotor cortex (rPMC) was also stimulated as control site. The same face stimuli with neutral, happy and fearful expressions were presented in separate blocks and participants were asked to complete either a facial identity or facial emotion matching task. Analyses performed on posterior face specific EEG components revealed that mPFC-TMS reduced the P1-N1 component. In particular, only when an explicit expression processing was required, mPFC-TMS interacted with emotion type in relation to hemispheric side at different timing; the first P1-N1 component was affected in the right hemisphere whereas the later N1-P2 component was modulated in the left hemisphere. These findings support the hypothesis that the frontal cortex exerts an early influence on the occipital cortex during face processing and suggest a different timing of the right and left hemisphere involvement in emotion discrimination.


Assuntos
Eletroencefalografia/métodos , Emoções/fisiologia , Expressão Facial , Reconhecimento Facial/fisiologia , Córtex Motor/fisiologia , Lobo Occipital/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA