RESUMO
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.
Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apetite/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hipotálamo/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Xenobióticos/farmacologiaRESUMO
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.
Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Domínio Catalítico , Melanoma/genética , Mutação , Neoplasias Cutâneas/genéticaRESUMO
AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.
Assuntos
Benzamidas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Pirimidinas , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Ativadas por AMPRESUMO
INTRODUCTION: The presence of inflammation is a key hallmark of cancer and, plays an important role in disease progression and survival in colorectal cancer (CRC). Calprotectin detected in the faeces is a sensitive measure of colonic inflammation. The role of FC as a diagnostic test that may categorise patients by risk of neoplasia is poorly defined. This systematic review and meta-analysis aims to characterise the relationship between elevations of FC and colorectal neoplasia. METHODS: A systematic review was performed using the keywords (MESH terms) and a statistical and meta-analysis was performed. RESULTS: A total of 35 studies are included in this review. CRC patients are more likely than controls to have an elevated FC OR 5.19, 95% CI 3.12-8.62, p < 0.001 with a heterogeneity (I2 = 27%). No tumour characteristics significantly correlated with FC, only stage of CRC shows signs that it may potentially correlate with FC. CONCLUSION: FC levels are significantly higher in CRC, with high sensitivity. Its low specificity prevents it from being used to diagnose or screen for CRC.
Assuntos
Neoplasias Colorretais , Complexo Antígeno L1 Leucocitário , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Fezes/química , Humanos , Inflamação , Complexo Antígeno L1 Leucocitário/análise , Sensibilidade e EspecificidadeRESUMO
AIM: Although the relationship between colorectal neoplasia and inflammation is well described, the role of faecal calprotectin (FC) in clinical practice to diagnose or screen patients for colorectal neoplasia is less defined. This prospective study characterizes the relationship between FC and colorectal neoplasia in patients within the faecal occult blood testing (FOBT) positive patients in the Scottish Bowel Screening Programme. METHODS: All FOBT positive patients attending for colonoscopy between February 2016 and July 2017 were invited to participate. Patients provided a stool sample for FC before commencing bowel preparation. All demographics and endoscopic findings were collected prospectively. RESULTS: In all, 352 patients were included. 210 patients had FC > 50 µg. Colorectal cancer (CRC) patients had a higher median FC (138.5 µg/g, P < 0.05), in comparison to those without CRC, and 13/14 had an FC > 50 µg/g (93%). FC had a high sensitivity (92.8%) and negative predictive value (99.3%) for CRC, but with a low specificity (41.7%) and positive predictive value (6.2%). FC sensitivity increased sequentially as neoplasms progressed from non-advanced to malignant neoplasia (48.6% non-advanced adenoma vs. 92.9% CRC). However, no significant relationship was observed between FC and non-cancer neoplasia. CONCLUSION: In an FOBT positive screening population, FC was strongly associated with CRC (sensitivity 92.8%, specificity 41.7% for CRC, at 50 µg/g). However, although sensitive for the detection of CRC, FC failed to show sufficient sensitivity or specificity for the detection of non-cancer neoplasia. Based on these results we cannot recommend routine use of FC in a bowel screening population to detect cancer per se, but it is apparent that, with further optimization, faecal assessments including quantification of haemoglobin and inflammation could form part of a risk assessment tool aimed at refining the selection of patients for colonoscopy in both symptomatic and screening populations.
Assuntos
Neoplasias Colorretais , Complexo Antígeno L1 Leucocitário , Colonoscopia , Neoplasias Colorretais/epidemiologia , Detecção Precoce de Câncer/métodos , Fezes , Humanos , Programas de Rastreamento/métodos , Sangue Oculto , Estudos Prospectivos , Sensibilidade e EspecificidadeRESUMO
The γ subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different γ isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged versions of the γ1, γ2 or γ3 isoform. When assayed at a physiological ATP concentration (5 mM), γ1- and γ2-containing complexes were allosterically activated almost 10-fold by AMP, with EC50 values one to two orders of magnitude lower than the ATP concentration. By contrast, γ3 complexes were barely activated by AMP under these conditions, although we did observe some activation at lower ATP concentrations. Despite this, all three complexes were activated, due to increased Thr(172) phosphorylation, when cells were incubated with mitochondrial inhibitors that increase cellular AMP. With γ1 complexes, activation and Thr(172) phosphorylation induced by the upstream kinase LKB1 [liver kinase B1; but not calmodulin-dependent kinase kinase (CaMKKß)] in cell-free assays was markedly promoted by AMP and, to a smaller extent and less potently, by ADP. However, effects of AMP or ADP on activation and phosphorylation of the γ2 and γ3 complexes were small or insignificant. Binding of AMP or ADP protected all three γ subunit complexes against inactivation by Thr(172) dephosphorylation; with γ2 complexes, ADP had similar potency to AMP, but with γ1 and γ3 complexes, ADP was less potent than AMP. Thus, AMPK complexes containing different γ subunit isoforms respond differently to changes in AMP, ADP or ATP. These differences may tune the responses of the isoforms to fit their differing physiological roles.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/fisiologia , Monofosfato de Adenosina/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Isoformas de Proteínas/fisiologia , Subunidades Proteicas/fisiologiaRESUMO
KEY POINTS: Progression of hypoxic pulmonary hypertension is thought to be due, in part, to suppression of voltage-gated potassium channels (Kv ) in pulmonary arterial smooth muscle by hypoxia, although the precise molecular mechanisms have been unclear. AMP-activated protein kinase (AMPK) has been proposed to couple inhibition of mitochondrial metabolism by hypoxia to acute hypoxic pulmonary vasoconstriction and progression of pulmonary hypertension. Inhibition of complex I of the mitochondrial electron transport chain activated AMPK and inhibited Kv 1.5 channels in pulmonary arterial myocytes. AMPK activation by 5-aminoimidazole-4-carboxamide riboside, A769662 or C13 attenuated Kv 1.5 currents in pulmonary arterial myocytes, and this effect was non-additive with respect to Kv 1.5 inhibition by hypoxia and mitochondrial poisons. Recombinant AMPK phosphorylated recombinant human Kv 1.5 channels in cell-free assays, and inhibited K(+) currents when introduced into HEK 293 cells stably expressing Kv 1.5. These results suggest that AMPK is the primary mediator of reductions in Kv 1.5 channels following inhibition of mitochondrial oxidative phosphorylation during hypoxia and by mitochondrial poisons. ABSTRACT: Progression of hypoxic pulmonary hypertension is thought to be due, in part, to suppression of voltage-gated potassium channels (Kv ) in pulmonary arterial smooth muscle cells that is mediated by the inhibition of mitochondrial oxidative phosphorylation. We sought to determine the role in this process of the AMP-activated protein kinase (AMPK), which is intimately coupled to mitochondrial function due to its activation by LKB1-dependent phosphorylation in response to increases in the cellular AMP:ATP and/or ADP:ATP ratios. Inhibition of complex I of the mitochondrial electron transport chain using phenformin activated AMPK and inhibited Kv currents in pulmonary arterial myocytes, consistent with previously reported effects of mitochondrial inhibitors. Myocyte Kv currents were also markedly inhibited upon AMPK activation by A769662, 5-aminoimidazole-4-carboxamide riboside and C13 and by intracellular dialysis from a patch-pipette of activated (thiophosphorylated) recombinant AMPK heterotrimers (α2ß2γ1 or α1ß1γ1). Hypoxia and inhibitors of mitochondrial oxidative phosphorylation reduced AMPK-sensitive K(+) currents, which were also blocked by the selective Kv 1.5 channel inhibitor diphenyl phosphine oxide-1 but unaffected by the presence of the BKCa channel blocker paxilline. Moreover, recombinant human Kv 1.5 channels were phosphorylated by AMPK in cell-free assays, and K(+) currents carried by Kv 1.5 stably expressed in HEK 293 cells were inhibited by intracellular dialysis of AMPK heterotrimers and by A769662, the effects of which were blocked by compound C. We conclude that AMPK mediates Kv channel inhibition by hypoxia in pulmonary arterial myocytes, at least in part, through phosphorylation of Kv 1.5 and/or an associated protein.
Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Hipóxia/fisiopatologia , Canal de Potássio Kv1.5/fisiologia , Mitocôndrias/metabolismo , Células Musculares/fisiologia , Animais , Células HEK293 , Humanos , Masculino , Fosforilação Oxidativa , Artéria Pulmonar/citologia , Ratos Sprague-DawleyRESUMO
AMP-activated protein kinase (AMPK) occurs as heterotrimeric complexes in which a catalytic subunit (α1/α2) is bound to one of two ß subunits (ß1/ß2) and one of three γ subunits (γ1/γ2/γ3). The ability to selectively activate specific isoforms would be a useful research tool and a promising strategy to combat diseases such as cancer and Type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ1- but not γ3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 (unc-51-like autophagy-activating kinase 1) on Ser555, but not proposed AMPK-γ3 substrates such as Ser231 on TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 (TBC1D1) or Ser212 on acetyl-CoA carboxylase subunit 2 (ACC2), nor did it stimulate glucose transport. Surprisingly, however, in human embryonic kidney (HEK) 293 cells expressing human γ1, γ2 or γ3, PT-1 activated all three complexes equally. We were unable to reproduce previous findings suggesting that PT-1 activates AMPK by direct binding between the kinase and auto-inhibitory domains (AIDs) of the α subunit. We show instead that PT-1 activates AMPK indirectly by inhibiting the respiratory chain and increasing cellular AMP:ATP and/or ADP:ATP ratios. Consistent with this mechanism, PT-1 failed to activate AMPK in HEK293 cells expressing an AMP-insensitive R299G mutant of AMPK-γ1. We propose that the failure of PT-1 to activate γ3-containing complexes in muscle is not an intrinsic feature of such complexes, but is because PT-1 does not increase cellular AMP:ATP ratios in the specific subcellular compartment(s) in which γ3 complexes are located.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/química , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Monofosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Transporte de Elétrons/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucose/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/farmacologiaRESUMO
The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the 'ST loop' (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)-AMPK pathway, which would otherwise inhibit cell growth and proliferation.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Modelos Moleculares , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Potássio Shab/metabolismo , Potenciais de Ação , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática , Humanos , Ionomicina/farmacologia , Fosforilação , RatosRESUMO
Heteromeric Tandem pore domain Acid Sensitive (TASK)-1/3 channels are critical to oxygen-sensing by carotid body type 1 cells, where hypoxia-induced inhibition of TASK-3 and/or TASK-1/3 potassium currents leads to voltage-gated calcium entry, exocytotic transmitter release and increases in carotid body afferent input responses that initiate corrective changes in breathing patterns. It was proposed that, in response to hypoxia, the AMP-activated protein kinase (AMPK) might directly phosphorylate and inhibit TASK channels, in particular TASK-3, but studies on rat type I cells questioned this view. However, sequence alignment identified a putative AMPK recognition motif in human (h) TASK-3, but not hTASK-1, with Ser55 representing a potential phosphorylation site. We therefore studied the effects of five different AMPK activators on recombinant hTASK-3 potassium channels expressed in human embryonic kidney (HEK)-293 cells. Two structurally unrelated AMPK activators, the thienopyridine A-769662 (100-500 µM) and the benzimidazole 991 (3-30 µM) inhibited hTASK-3 currents in a concentration-dependent manner, while the 4-azabenzimidazole MK-8722 (3-30 µM) partially inhibited hTASK-3 at concentrations above those required for maximal AMPK activation. By contrast, the 4-azabenzimidazole, BI-9774 (10-100 µM; a closely related analogue of MK8722) and the pro-drug AICA-riboside (1 mM; metabolised to ZMP, an AMP-mimetic) had no significant effect on hTASK-3 currents at concentrations sufficient to maximally activate AMPK. Importantly, A-769662 (300 µM) also inhibited hTASK-3 channel currents in HEK-293 cells that stably over-expressed an AMPK-ß1 subunit mutant (S108A) that renders AMPK insensitive to activators that bind to the Allosteric Drug and Metabolite site, such as A-769662. We therefore identify A-769662 and 991 as novel hTASK-3 channel inhibitors and provide conclusive evidence that AMPK does not regulate hTASK-3 channel currents.
RESUMO
Inhibition of large conductance calcium-activated potassium (BKCa) channels mediates, in part, oxygen sensing by carotid body type I cells. However, BKCa channels remain active in cells that do not serve to monitor oxygen supply. Using a novel, bacterially derived AMP-activated protein kinase (AMPK), we show that AMPK phosphorylates and inhibits BKCa channels in a splice variant-specific manner. Inclusion of the stress-regulated exon within BKCa channel α subunits increased the stoichiometry of phosphorylation by AMPK when compared with channels lacking this exon. Surprisingly, however, the increased phosphorylation conferred by the stress-regulated exon abolished BKCa channel inhibition by AMPK. Point mutation of a single serine (Ser-657) within this exon reduced channel phosphorylation and restored channel inhibition by AMPK. Significantly, RT-PCR showed that rat carotid body type I cells express only the variant of BKCa that lacks the stress-regulated exon, and intracellular dialysis of bacterially expressed AMPK markedly attenuated BKCa currents in these cells. Conditional regulation of BKCa channel splice variants by AMPK may therefore determine the response of carotid body type I cells to hypoxia.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Corpo Carotídeo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Animais Recém-Nascidos , Eletrofisiologia , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Fígado/metabolismo , Camundongos , Fosforilação , Isoformas de Proteínas/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
AMP-activated protein kinase (AMPK) coordinates energy homeostasis during metabolic and energy stress. We report that the catalytic subunit isoform AMPK-α1 (but not α2) is cleaved by caspase-3 at an early stage during induction of apoptosis. AMPK-α1 cleavage occurs following Asp529, generating an â¼58-kDa N-terminal fragment (cl-AMPK-α1) and leading to the precise excision of the nuclear export sequence (NES) from the C-terminal end. This cleavage does not affect (1) the stability of pre-formed heterotrimeric complexes, (2) the ability of cl-AMPK-α1 to become phosphorylated and activated by the upstream kinases LKB1 or CaMKK2, or (3) allosteric activation by AMP or A-769662. Importantly, cl-AMPK-α1 is only detectable in the nucleus, consistent with removal of the NES, and ectopic expression of cleavage-resistant D529A-mutant AMPK-α1 promotes cell death induced by cytotoxic agents. Thus, we have elucidated a non-canonical mechanism of AMPK activation within the nucleus, which protects cells against death induced by DNA damage.
Assuntos
Proteínas Quinases Ativadas por AMP , Caspases , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Caspases/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , FosforilaçãoRESUMO
Cordycepin (3'-deoxyadenosine) is a major bioactive agent in Cordyceps militaris, a fungus used in traditional Chinese medicine. It has been proposed to have many beneficial metabolic effects by activating AMP-activated protein kinase (AMPK), but the mechanism of activation remained uncertain. We report that cordycepin enters cells via adenosine transporters and is converted by cellular metabolism into mono-, di-, and triphosphates, which at high cordycepin concentrations can almost replace cellular adenine nucleotides. AMPK activation by cordycepin in intact cells correlates with the content of cordycepin monophosphate and not other cordycepin or adenine nucleotides. Genetic knockout of AMPK sensitizes cells to the cytotoxic effects of cordycepin. In cell-free assays, cordycepin monophosphate mimics all three effects of AMP on AMPK, while activation in cells is blocked by a γ-subunit mutation that prevents activation by AMP. Thus, cordycepin is a pro-drug that activates AMPK by being converted by cellular metabolism into the AMP analog cordycepin monophosphate.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Desoxiadenosinas/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nucleotídeos de Desoxiadenina/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/farmacologia , Células Hep G2 , Humanos , Fosforilação/efeitos dos fármacosRESUMO
Hypoxic pulmonary vasoconstriction (HPV), which aids ventilation-perfusion matching in the lungs, is triggered by mechanisms intrinsic to pulmonary arterial smooth muscles. The unique sensitivity of these muscles to hypoxia is conferred by mitochondrial cytochrome c oxidase subunit 4 isoform 2, the inhibition of which has been proposed to trigger HPV through increased generation of mitochondrial reactive oxygen species. Contrary to this model, we have shown that the LKB1-AMPK-α1 signaling pathway is critical to HPV. Spectral Doppler ultrasound revealed that deletion of the AMPK-α1 catalytic subunit blocked HPV in mice during mild (8% O2) and severe (5% O2) hypoxia, whereas AMPK-α2 deletion attenuated HPV only during severe hypoxia. By contrast, neither of these genetic manipulations affected serotonin-induced reductions in pulmonary vascular flow. HPV was also attenuated by reduced expression of LKB1, a kinase that activates AMPK during energy stress, but not after deletion of CaMKK2, a kinase that activates AMPK in response to increases in cytoplasmic Ca2+ Fluorescence imaging of acutely isolated pulmonary arterial myocytes revealed that AMPK-α1 or AMPK-α2 deletion did not affect mitochondrial membrane potential during normoxia or hypoxia. However, deletion of AMPK-α1, but not of AMPK-α2, blocked hypoxia from inhibiting KV1.5, the classical "oxygen-sensing" K+ channel in pulmonary arterial myocytes. We conclude that LKB1-AMPK-α1 signaling pathways downstream of mitochondria are critical for the induction of HPV, in a manner also supported by AMPK-α2 during severe hypoxia.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipóxia , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Artéria Pulmonar/fisiologia , Transdução de Sinais , Vasoconstrição/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Proteínas Serina-Treonina Quinases/genética , Artéria Pulmonar/citologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
SU6656, a Src kinase inhibitor, was reported to increase fat oxidation and reduce body weight in mice, with proposed mechanisms involving AMP-activated protein kinase (AMPK) activation via inhibition of phosphorylation of either LKB1 or AMPK by the Src kinase, Fyn. However, we report that AMPK activation by SU6656 is independent of Src kinases or tyrosine phosphorylation of LKB1 or AMPK and is not due to decreased cellular energy status or binding at the ADaM site on AMPK. SU6656 is a potent AMPK inhibitor, yet binding at the catalytic site paradoxically promotes phosphorylation of Thr172 by LKB1. This would enhance phosphorylation of downstream targets provided the lifetime of Thr172 phosphorylation was sufficient to allow dissociation of the inhibitor and subsequent catalysis prior to its dephosphorylation. By contrast, sorafenib, a kinase inhibitor in clinical use, activates AMPK indirectly by inhibiting mitochondrial metabolism and increasing cellular AMP:ADP and/or ADP:ATP ratios.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Indóis/farmacologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Sulfonamidas/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Sistema Livre de Células , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Indanos/farmacologia , Indóis/química , Indóis/metabolismo , Mutagênese Sítio-Dirigida , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Sorafenibe , Sulfonamidas/química , Sulfonamidas/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismoRESUMO
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is expressed in essentially all eukaryotic cells, suggesting that it arose during early eukaryotic evolution. It occurs universally as heterotrimeric complexes containing catalytic α subunits and regulatory ß and γ subunits. Although Drosophila melanogaster contains single genes encoding each subunit, in mammals, each subunit exists as multiple isoforms encoded by distinct genes, giving rise to up to 12 heterotrimeric combinations. The multiple isoforms of each subunit are 2R-ohnologues generated by the two rounds of whole genome duplication that occurred at the evolutionary origin of the vertebrates. Although the differential roles of these isoform combinations remain only partly understood, there are indications that they may have different subcellular locations, different inputs and outputs, and different functions. The multiple isoforms are of particular interest with respect to the roles of AMPK in cancer because the genes encoding some isoforms, such as PRKAA1 and PRKAB2 (encoding α1 and ß2), are quite frequently amplified in tumour cells, whereas the genes encoding others, such as PRKAA2 (encoding α2), tend to be mutated, which, in some but not all cases, may result in a loss of function. Thus, although AMPK acts downstream of the tumour suppressor liver kinase B1, and some of its isoform combinations may act as tumour suppressors that restrain the growth and proliferation of tumour cells, other isoform combinations may paradoxically act as oncogenes, perhaps by aiding the survival of tumour cells undergoing environmental stresses such as hypoxia or nutrient deprivation.
Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Evolução Molecular , Humanos , Isoenzimas/genética , Neoplasias/enzimologia , Proteínas Oncogênicas/metabolismo , Subunidades Proteicas/química , Proteínas Supressoras de Tumor/metabolismoRESUMO
UNLABELLED: The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca(2+)/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 reexpression in these cells causes cell-cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca(2+) ionophore A23187 caused a G1 arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, Ca(2+)/calmodulin-independent CAMKK2 mutant also caused G1 arrest similar to that caused by expression of LKB1, while expression of a dominant-negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell-cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell-cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell-cycle arrest can be restored by reexpressing LKB1 or a constitutively active CAMKK2, or by pharmacologic agents that increase intracellular Ca(2+) and thus activate endogenous CAMKK2. IMPLICATIONS: Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. Mol Cancer Res; 14(8); 683-95. ©2016 AACR.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Humanos , FosforilaçãoRESUMO
UNLABELLED: Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS: Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS: Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION: BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.
Assuntos
Carcinogênese/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Momordica charantia/química , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the metabolism of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl-5'-monophosphate (ZMP) and its precursor AICAR, which is a pharmacological AMPK activator. We explored whether MTX promotes AMPK activation in cultured myotubes and isolated skeletal muscle. We found MTX markedly reduced the threshold for AICAR-induced AMPK activation and potentiated glucose uptake and lipid oxidation. Gene silencing of the MTX target ATIC activated AMPK and stimulated lipid oxidation in cultured myotubes. Furthermore, MTX activated AMPK in wild-type HEK-293 cells. These effects were abolished in skeletal muscle lacking the muscle-specific, ZMP-sensitive AMPK-γ3 subunit and in HEK-293 cells expressing a ZMP-insensitive mutant AMPK-γ2 subunit. Collectively, our findings underscore a role for AMPK as a direct molecular link between MTX and energy metabolism in skeletal muscle. Cotherapy with AICAR and MTX could represent a novel strategy to treat metabolic disorders and overcome current limitations of AICAR monotherapy.