Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am Nat ; 203(4): E107-E127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489775

RESUMO

AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.


Assuntos
Quirópteros , Seleção Genética , Humanos , Animais , Quirópteros/genética , Fenótipo , Folhas de Planta , Evolução Biológica
2.
Evolution ; 73(5): 961-981, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30861104

RESUMO

We explored the evolution of morphological integration in the most noteworthy example of adaptive radiation in mammals, the New World leaf-nosed bats, using a massive dataset and by combining phylogenetic comparative methods and quantitative genetic approaches. We demonstrated that the phenotypic covariance structure remained conserved on a broader phylogenetic scale but also showed a substantial divergence between interclade comparisons. Most of the phylogenetic structure in the integration space can be explained by splits at the beginning of the diversification of major clades. Our results provide evidence for a multiple peak adaptive landscape in the evolution of cranial covariance structure and morphological differentiation, based upon diet and roosting ecology. In this scenario, the successful radiation of phyllostomid bats was triggered by the diversification of dietary and roosting strategies, and the invasion of these new adaptive zones lead to changes in phenotypic covariance structure and average morphology. Our results suggest that intense natural selection preceded the invasion of these new adaptive zones and played a fundamental role in shaping cranial covariance structure and morphological differentiation in this hyperdiverse clade of mammals. Finally, our study demonstrates the power of combining comparative methods and quantitative genetic approaches when investigating the evolution of complex morphologies.


Assuntos
Quirópteros/fisiologia , Ecologia , Crânio/anatomia & histologia , Ração Animal , Animais , Quirópteros/genética , Especiação Genética , Modelos Biológicos , Análise Multivariada , Fenótipo , Filogenia , Seleção Genética , Especificidade da Espécie
3.
Sci Rep ; 8(1): 7867, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777172

RESUMO

Establishing the genetic basis that underlies craniofacial variability in natural populations is one of the main topics of evolutionary and developmental studies. One of the genes associated with mammal craniofacial variability is RUNX2, and in the present study we investigated the association between craniofacial length and width and RUNX2 across New World bats (Phyllostomidae) and primates (Catarrhini and Platyrrhini). Our results showed contrasting patterns of association between the glutamate/alanine ratios (Q/A ratio) and palate shape in these highly diverse groups. In phyllostomid bats, we found an association between shorter/broader faces and increase of the Q/A ratio. In New World monkeys (NWM) there was a positive correlation of increasing Q/A ratios to more elongated faces. Our findings reinforced the role of the Q/A ratio as a flexible genetic mechanism that would rapidly change the time of skull ossification throughout development. However, we propose a scenario in which the influence of this genetic adjustment system is indirect. The Q/A ratio would not lead to a specific phenotype, but throughout the history of a lineage, would act along with evolutionary constraints, as well as other genes, as a facilitator for adaptive morphological changes.


Assuntos
Quirópteros/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Palato/fisiologia , Platirrinos/genética , Alanina/análise , Animais , Teorema de Bayes , Evolução Biológica , Quirópteros/classificação , Subunidade alfa 1 de Fator de Ligação ao Core/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Bases de Dados Genéticas , Ácido Glutâmico/análise , Palato/anatomia & histologia , Filogenia , Platirrinos/classificação , Crânio/anatomia & histologia , Crânio/fisiologia
4.
Sci Rep ; 7(1): 11076, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894101

RESUMO

The family Phyllostomidae, which evolved in the New World during the last 30 million years, represents one of the largest and most morphologically diverse mammal families. Due to its uniquely diverse functional morphology, the phyllostomid skull is presumed to have evolved under strong directional selection; however, quantitative estimation of the strength of selection in this extraordinary lineage has not been reported. Here, we used comparative quantitative genetics approaches to elucidate the processes that drove cranial evolution in phyllostomids. We also quantified the strength of selection and explored its association with dietary transitions and specialization along the phyllostomid phylogeny. Our results suggest that natural selection was the evolutionary process responsible for cranial diversification in phyllostomid bats. Remarkably, the strongest selection in the phyllostomid phylogeny was associated with dietary specialization and the origination of novel feeding habits, suggesting that the adaptive diversification of phyllostomid bats was triggered by ecological opportunities. These findings are consistent with Simpson's quantum evolutionary model of transitions between adaptive zones. The multivariate analyses used in this study provides a powerful tool for understanding the role of evolutionary processes in shaping phenotypic diversity in any group on both micro- and macroevolutionary scales.


Assuntos
Evolução Biológica , Quirópteros , Radiação , Seleção Genética , Animais , Biodiversidade , Quirópteros/anatomia & histologia , Quirópteros/classificação , Análise por Conglomerados , Meio Ambiente
5.
Evolution ; 71(3): 595-609, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27917480

RESUMO

The importance of the environment in shaping phenotypic evolution lies at the core of evolutionary biology. Chipmunks of the genus Tamias (subgenus Neotamias) are part of a very recent radiation, occupying a wide range of environments with marked niche partitioning among species. One open question is if and how those differences in environments affected phenotypic evolution in this lineage. Herein we examine the relative importance of genetic drift versus natural selection in the origin of cranial diversity exhibited by clade members. We also explore the degree to which variation in potential selective agents (environmental variables) are correlated with the patterns of morphological variation presented. We found that genetic drift cannot explain morphological diversification in the group, thus supporting the potential role of natural selection as the predominant evolutionary force during Neotamias cranial diversification, although the strength of selection varied greatly among species. This morphological diversification, in turn, was correlated with environmental conditions, suggesting a possible causal relationship. These results underscore that extant Neotamias represent a radiation in which aspects of the environment might have acted as the selective force driving species' divergence.


Assuntos
Evolução Biológica , Meio Ambiente , Sciuridae/anatomia & histologia , Seleção Genética , Animais , Canadá , Deriva Genética , Sciuridae/genética , Crânio/anatomia & histologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA