Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 208(7): 780-790, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531632

RESUMO

Rationale: The small airway epithelium (beyond the sixth generation), the initiation site of smoking-induced airway disorders, is highly sensitive to the stress of smoking. Because of variations over time in smoking habits, the small airway epithelium transcriptome is dynamic, fluctuating not only among smokers but also within each smoker. Objectives: To perform accurate assessment of the smoking-related dysregulation of the human small airway epithelium despite the variation of smoking within the same individual and of the effects of smoking cessation on the dysregulated transcriptome. Methods: We conducted serial sampling of the same smokers and nonsmoker control subjects over time to identify persistent smoking dysregulation of the biology of the small airway epithelium over 1 year. We conducted serial sampling of smokers who quit smoking, before and after smoking cessation, to assess the effect of smoking cessation on the smoking-dysregulated genes. Measurements and Main Results: Repeated measures ANOVA of the small airway epithelium transcriptome sampled four times in the same individuals over 1 year enabled the identification of 475 persistent smoking-dysregulated genes. Most genes were normalized after 12 months of smoking cessation; however, 53 (11%) genes, including CYP1B1, PIR, ME1, and TRIM16, remained persistently abnormally expressed. Dysregulated pathways enriched with the nonreversible genes included xenobiotic metabolism signaling, bupropion degradation, and nicotine degradation. Conclusions: Analysis of repetitive sampling of the same individuals identified persistent smoking-induced dysregulation of the small airway epithelium transcriptome and the effect of smoking cessation. These results help identify targets for the development of therapies that can be applicable to smoking-related airway diseases.


Assuntos
Abandono do Hábito de Fumar , Fumar , Humanos , Fumar/efeitos adversos , Fumar/genética , Fumar/metabolismo , Fumar Tabaco , Transcriptoma , Epitélio/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Oral Pathol Med ; 52(5): 431-439, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36300726

RESUMO

BACKGROUND: Electronic cigarettes are increasing in popularity, but there is only little information on their biologic effects on the oral epithelium, the initial site exposed to electronic cigarette smoke. METHODS: We assessed the oral epithelium response to electronic cigarettes by comparing the histology and RNA transcriptome (mRNA and miRNA) of healthy electronic cigarette vapers to nonsmokers. mRNA was assessed based on: (1) genome-wide; (2) genes previously identified as dysregulated in the oral epithelium of electronic cigarette vapers versus nonsmokers; (3) immune and inflammatory-related genes previously identified as dysregulated in the nasal epithelium of electronic cigarette vapers compared to nonsmokers; (4) genes previously identified as dysregulated in the small airway epithelium of nonsmokers following an acute exposure to electronic cigarette; and (5) genes related to the initial steps of COVID-19 infection. In addition, miRNA was assessed genome-wide. Comparisons were performed using analysis of variance, and Benajmini-Hochberg corrected p < 0.05 was considered significant. RESULTS: The histology of the epithelium, lamina propria and basal layer in electronic cigarette vapers appeared normal. Assessment of mRNA and miRNA, based on all gene lists, did not identify any genes significantly modified in the oral epithelium of electronic cigarette vapers in response to electronic cigarette use. CONCLUSION: An average history of 2 years of vaping results in no detectable histologic or transcriptome abnormalities in the buccal mucosa.


Assuntos
COVID-19 , Sistemas Eletrônicos de Liberação de Nicotina , MicroRNAs , Vaping , Humanos , Fumantes , Vaping/efeitos adversos , MicroRNAs/genética
3.
Chem Biodivers ; 19(10): e202200202, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36163613

RESUMO

In this study, copper complexes with Curcumin (Cur) and 2,2'-bipyridine-5,5'-dicarboxylic acid (BPYD) were synthesized and their cytotoxicity on the MDA-MB-231 cell lines was evaluated. The resulting complex was characterized using FTIR, UV/VIS, CHNS, TGA, ICP-MS, and Mass spectroscopy techniques. The in-vitro cytotoxicity was studied on the MDA-MB-231 as a cancerous cell line and the HUVEC as a normal cell line. Reactive oxygen species (ROS) production was measured using the 2',7'-dichlorofluorescein diacetate (DCFDA) test in the MDA-MB-231 cancer cell lines. The in-vitro assays revealed that all synthesized copper complexes exhibited a higher cytotoxicity effect than carboplatin as a positive control on the MDA-MB-231 cells. While the synthesized complexes exhibited cytotoxic effects on cancerous cell lines, they are practically safe on normal cells. The Cu-Cur-BPYD complexes (a5 & b5) exhibited higher cytotoxicity on MDA-MB-231 cells with IC50 s around 4.9 and 2.3 mM, respectively. It can be concluded that the synthesized Cu-Cur-BPYD complexes (a5 & b5) could be considered effective anticancer candidates in complementary studies.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Compostos Heterocíclicos , Curcumina/farmacologia , Curcumina/química , Cobre/química , Espécies Reativas de Oxigênio/metabolismo , Carboplatina/farmacologia , Linhagem Celular Tumoral , 2,2'-Dipiridil/farmacologia , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Heterocíclicos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
4.
J Microencapsul ; 39(5): 433-451, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35762905

RESUMO

AIM: This study aimed to develop novel pH-sensitive Glucosamine (Glu) targeted Polydopamine (PDA) coated mesoporous silica (SBA-15) nanoparticles (NPs) for selective delivery of anticancer Anderson-type manganese polyoxomolybdate (POMo) to breast cancer. METHODS: The POMo@SBA-PDA-Glu NPs were prepared via direct hydrothermal synthesis of SBA, POMo loading, in situ PDA post functionalization, and Glu anchoring; the chemical structures were fully studied by different characterisation methods. The anticancer activity was studied by MTT method and Annexin V-FITC apoptosis detection kit. RESULTS: The optimised NPs had a hydrodynamic size (HS) of 195 nm, a zeta potential (ZP) of -18.9 mV, a loading content percent (LC%) of 45%, and a pH-responsive release profile. The targeted NPs showed increased anticancer activity against breast cancer cell lines compared to the free POMo with the highest cellular uptake and apoptosis level in the MDA-MB-231 cells. CONCLUSIONS: POMo@SBA-PDA-Glu NPs could be a promising anticancer candidate for further studies.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Feminino , Glucosamina , Humanos , Concentração de Íons de Hidrogênio , Indóis , Nanopartículas/química , Polímeros , Porosidade , Dióxido de Silício/química
5.
Langmuir ; 37(21): 6475-6489, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010005

RESUMO

This study is aimed at developing a micellar carrier for an Anderson-type manganese polyoxomolybdate (TRIS-MnPOMo) to improve the potency and reduce the general toxicity. The biotin-targeted stearic acid-polyethylene glycol (SPB) polymeric conjugate was selected for the first time as a micelle-forming basis for the delivery of TRIS-MnPOMo to breast cancer cells. The cytotoxicity of TRIS-MnPOMo and its nanomicellar form (TRIS-MnPOMo@SPB) was evaluated against MCF-7, MDA-MB-231 (breast cancer cell lines), and HUVEC (normal cell line) in vitro using the MTT assay. The quantity of cellular uptake and apoptosis level were studied properly using standard methods. The hydrodynamic size, zeta potential, and polydispersity index of the prepared micelles were 140 nm, -15.6 mV, and 0.16, respectively. The critical micelle concentration was about 30 µg/mL, which supports the colloidal stability of the micellar dispersion. The entrapment efficiency was interestingly high (about 82%), and a pH-responsive release of TRIS-MnPOMo was successfully achieved. The micellar form showed better cytotoxicity than the free TRIS-MnPOMo on cancer cells without any significant heme and normal cell toxicity. Biotin-targeted nanomicelles internalized into the MDA-MB-231 cells interestingly better than nontargeted micelles and TRIS-MnPOMo, most probably via the endocytosis pathway. Furthermore, at the same concentration, micelles remarkably increased the level of induced apoptosis in MDA-MB-231 cells. In conclusion, TRIS-MnPOMo@SPB could profoundly improve potency, safety, and cellular uptake; these results are promising for further evaluations in vivo.


Assuntos
Antineoplásicos , Biotina , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Micelas , Polietilenoglicóis/toxicidade
6.
Am J Respir Crit Care Med ; 202(2): 219-229, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32432483

RESUMO

Rationale: Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19), a predominantly respiratory illness. The first step in SARS-CoV-2 infection is binding of the virus to ACE2 (angiotensin-converting enzyme 2) on the airway epithelium.Objectives: The objective was to gain insight into the expression of ACE2 in the human airway epithelium.Methods: Airway epithelia sampled by fiberoptic bronchoscopy of trachea, large airway epithelia (LAE), and small airway epithelia (SAE) of nonsmokers and smokers were analyzed for expression of ACE2 and other coronavirus infection-related genes using microarray, RNA sequencing, and 10x single-cell transcriptome analysis, with associated examination of ACE2-related microRNA.Measurements and Main Results:1) ACE2 is expressed similarly in the trachea and LAE, with lower expression in the SAE; 2) in the SAE, ACE2 is expressed in basal, intermediate, club, mucus, and ciliated cells; 3) ACE2 is upregulated in the SAE by smoking, significantly in men; 4) levels of miR-1246 expression could play a role in ACE2 upregulation in the SAE of smokers; and 5) ACE2 is expressed in airway epithelium differentiated in vitro on air-liquid interface cultures from primary airway basal stem/progenitor cells; this can be replicated using LAE and SAE immortalized basal cell lines derived from healthy nonsmokers.Conclusions:ACE2, the gene encoding the receptor for SARS-CoV-2, is expressed in the human airway epithelium, with variations in expression relevant to the biology of initial steps in SARS-CoV-2 infection.


Assuntos
Betacoronavirus , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Mucosa Respiratória/metabolismo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Estudos de Casos e Controles , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pandemias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2 , Fatores Sexuais , Fumar/metabolismo , Traqueia/metabolismo
7.
Drug Dev Ind Pharm ; 47(10): 1607-1623, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35060826

RESUMO

Boron neutron capture therapy (BNCT) is one of the best treatment modalities for glioblastoma multiform that could selectively kill the tumor cells. To be successful in BNCT, it is crucial to have enough 10B in the tumor. l-boron phenylalanine (l-BPA) targeted thermo-responsive core-shell nanoparticles (NPs) of chitosan-poly(N-isopropylacrylamide) (PNIPAAm) were our idea for endocytosis via sialic acid receptors, and selective delivery of 10B to glial cells. Methotrexate (MTX) was chosen as a model drug for evaluating the efficacy of NPs in tumor cells, and BPA was selected for BNCT purposes. The polymeric conjugates were synthesized and the chemical structures were approved by spectroscopic methods (FTIR, 1H NMR, and 11B NMR). Cargos were loaded efficiently (>95%) in the prepared NPs, and the release profile of MTX and BPA was studied around the lower critical solution temperature (LCST; about 39 °C). The loaded drugs were released quantitatively at the LCST, while almost no drug was released at 37 °C. The prepared NPs did not show considerable hemolysis ratio (<2%) and were still safe when loaded BPA, on U87MG cells. The MTX loaded NPs showed lower IC50 (30.78 µg/mL) than the free MTX (37.03 µg/mL) in MTT assay, and targeted NPs had the lowest IC50s in U87MG cell lines (27.35 µg/mL). Targeted BPA@CSSU-PNI NPs were uptaken better than the non-targeted ones by U87MG cells, and CR-39 assay showed the boron content efficiency for further applications in BNCT. This study's results introduce novel targeted thermo-responsive NPs for treating glioblastoma using BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Quitosana , Glioblastoma , Nanopartículas , Resinas Acrílicas , Alanina , Boro/metabolismo , Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Metotrexato , Fenilalanina
8.
Pharm Dev Technol ; 26(8): 899-909, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34266344

RESUMO

Nanotechnology has revolutionized drug delivery in cancer treatment. In this study, novel efficient pH-responsive boron phenylalanine (BPA) targeted nanoparticles (NPs) based on ionic liquid modified chitosan have been introduced for selective mitoxantrone (MTO) delivery to the U87MG glioma cells. Urocanic acid (UA) and imidazolium (Im) based ionic liquids were used for structural modification simultaneously. The NPs were prepared by ionic gelation and fully characterized; the pH-responding and swelling index of NPs were studied carefully. The drug release was studied at a pH of 5.5 in comparison to the neutral state. Also, the cytotoxicity of loaded NPs was evaluated on U87MG glial cells, and cellular uptake was studied. The NPs were smaller than 250 nm, with a spherical pattern and acceptable uniformity with a zeta potential around +20 mV. The loading efficacy was about 85%, and most of the loaded MTO released at a pH of 5.5 after 48 h with a swelling-controlled mechanism. The NPs showed a relatively lower IC50 than the free MTO, and the BPA-targeted NPs have lower IC50 and better cellular uptake than non-targeted NPs in U87MG cells. More studies on this promising formula are on the way, and the results will be published soon.


Assuntos
Antineoplásicos/administração & dosagem , Glioma/tratamento farmacológico , Mitoxantrona/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Antineoplásicos/uso terapêutico , Boro , Linhagem Celular Tumoral , Quitosana , Humanos , Microscopia Eletrônica de Transmissão , Mitoxantrona/uso terapêutico , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Fenilalanina
9.
Respir Res ; 21(1): 200, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727470

RESUMO

BACKGROUND: The human small airway epithelium (SAE) plays a central role in the early events in the pathogenesis of most inherited and acquired lung disorders. Little is known about the molecular phenotypes of the specific cell populations comprising the SAE in humans, and the contribution of SAE specific cell populations to the risk for lung diseases. METHODS: Drop-seq single-cell RNA-sequencing was used to characterize the transcriptome of single cells from human SAE of nonsmokers and smokers by bronchoscopic brushing. RESULTS: Eleven distinct cell populations were identified, including major and rare epithelial cells, and immune/inflammatory cells. There was cell type-specific expression of genes relevant to the risk of the inherited pulmonary disorders, genes associated with risk of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis and (non-mutated) driver genes for lung cancers. Cigarette smoking significantly altered the cell type-specific transcriptomes and disease risk-related genes. CONCLUSIONS: This data provides new insights into the possible contribution of specific lung cells to the pathogenesis of lung disorders.


Assuntos
Fumar Cigarros/genética , Testes Genéticos/métodos , Pneumopatias/genética , Mucosa Respiratória/fisiologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Remodelação das Vias Aéreas/genética , Broncoscopia/métodos , Fumar Cigarros/efeitos adversos , Expressão Gênica , Humanos , Pneumopatias/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/patologia
10.
Drug Dev Ind Pharm ; 46(8): 1265-1277, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32594775

RESUMO

Gefitinib as an epidermal growth factor receptor tyrosine kinase inhibitor has strong potential in lung cancer therapy. However, a major challenge of using gefitinib is its toxicities. In the present study, we developed a dry powder inhaler dosage form containing gefitinib loaded glucosamine targeted solid lipid nanopaticles (Gef-G-SLNs) to locally transfer anticancer agent to the lung tumor. The Gef-G-SLNs were prepared by emulsion-solvent diffusion and evaporation method and optimized with irregular factorial design. The optimized nanoformulation was tested for action against A549 cells. Mannitol or lactose based dry powders were obtained from Gef-G-SLNs after spray drying and characterized using Anderson Cascade Impactor. The optimized formulation had drug loading of 33.29%, encapsulation efficiency of 97.31 ± 0.23%, zeta potential of -15.53 ± 0.47 mV, particle size of 187.23 ± 14.08 nm, polydispersity index of 0.28 ± 0.02 and release efficiency of 35.46 ± 2.25%. The Gef-G-SLNs showed superior anticancer effect compared to free gefitinib. The increased cellular uptake of G-SLNs in A549 cells was demonstrated compared with non-targeted SLNs using flow cytometry and fluorescence microscopy. The produced mannitol based microparticles showed suitable aerodynamic properties with an acceptable mass median aerodynamic diameter of 4.48 µm and fine particle fraction of 44.41%. Therefore, it can be concluded that this formulation represents promising drug delivery to treatment of lung cancer.


Assuntos
Gefitinibe/uso terapêutico , Glucosamina/administração & dosagem , Neoplasias Pulmonares , Nanopartículas , Administração por Inalação , Inaladores de Pó Seco , Gefitinibe/química , Glucosamina/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Pós
11.
Eur Respir J ; 53(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30705127

RESUMO

Airway remodelling in chronic obstructive pulmonary disease (COPD) originates, in part, from smoking-induced changes in airway basal stem/progenitor cells (BCs). Based on the knowledge that bone morphogenetic protein 4 (BMP4) influences epithelial progenitor function in the developing and adult mouse lung, we hypothesised that BMP4 signalling may regulate the biology of adult human airway BCs relevant to COPD.BMP4 signalling components in human airway epithelium were analysed at the mRNA and protein levels, and the differentiation of BCs was assessed using the BC expansion and air-liquid interface models in the absence/presence of BMP4, BMP receptor inhibitor and/or small interfering RNAs against BMP receptors and downstream signalling.The data demonstrate that in cigarette smokers, BMP4 is upregulated in ciliated and intermediate undifferentiated cells, and expression of the BMP4 receptor BMPR1A is enriched in BCs. BMP4 induced BCs to acquire a smoking-related abnormal phenotype in vitro mediated by BMPR1A/Smad signalling, characterised by decreased capacity to differentiate into normal mucociliary epithelium, while generating squamous metaplasia.Exaggerated BMP4 signalling promotes cigarette smoking-relevant airway epithelial remodelling by inducing abnormal phenotypes in human airway BCs. Targeting of BMP4 signalling in airway BCs may represent a novel target to prevent/treat COPD-associated airway disease.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fumar Cigarros/metabolismo , Epitélio/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Células-Tronco/patologia , Adulto , Idoso , Remodelação das Vias Aéreas , Proteína Morfogenética Óssea 4/genética , Estudos de Casos e Controles , Diferenciação Celular , Fumar Cigarros/patologia , Epitélio/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Adulto Jovem
12.
J Liposome Res ; 29(4): 383-398, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30668221

RESUMO

The current study aimed to develop PEGylated trimethyl chitosan (TMC) coated emulsomes (EMs) conjugated with octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells (HCC) of HepG2. Sorafenib loaded TMC coated EMs were prepared by the emulsion evaporation method and characterized concerning particle size, zeta potential, drug encapsulation efficiency, and in vitro drug release. Synthesized EMs were then conjugated to octreotide. The cytotoxicity of the targeted and non-targeted EMs was determined by cellular uptake and MTT assay on HepG2 cell. Cell cycle assay was also studied using flow cytometry. The results showed the optimized EMs had the particle size of 127 nm, zeta potential of -5.41 mV, loading efficiency of 95%, and drug release efficiency of 62% within 52 h. Octreotide was attached efficiently to the surface of EMs as much as 71%. MTT assay and cellular uptake studies showed that targeted EMs had more cytotoxicity than free sorafenib and non-targeted EMs. Cell cycle analyses revealed that there was a significant more accumulation of targeted EMs treated HepG2 cells in the G1 phase than free sorafenib and non-targeted EMs. The results indicate that designed EMs may be promising for the treatment of hepatocellular carcinoma.


Assuntos
Antineoplásicos/química , Quitosana/química , Nanocápsulas/química , Octreotida/química , Polietilenoglicóis/química , Sorafenibe/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Propriedades de Superfície
13.
Drug Dev Ind Pharm ; 44(5): 729-740, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29235901

RESUMO

In the current study, retinoic acid (RA) was conjugated to Pluronic F127 (PF127) through an esterification process. Mixed micelles were formed with tocopheryl polyethylene glycol 1000 (TPGS) for co-delivery of paclitaxel (PTX) and RA to the cancer cells. Mixed micelles of RA-PF127 and TPGS in different weight ratios (10:0, 7:3, 5:5, 3:7, 0:10 w/w) were prepared and physicochemical properties including, particle size, zeta potential, critical micelle concentration (CMC), drug loading content, entrapment efficiency, drug release, cellular uptake and in vitro cytotoxicity, were investigated in details. Furthermore, the pharmacokinetics of PTX-loaded optimized mixed micelles were evaluated in Sprague-Dawley rats and compared with Stragen® (PTX in Cremophor EL®). Particle sizes and zeta potentials of the drug-loaded micelles were in the range of 102.6-223.5 nm and -5.3 to -9.6 mV, respectively. The 7:3 and 5:5 micellar combinations had lower CMC values (0.034-0.042 mg/mL) than 0:10 (0.124 mg/mL). The entrapment efficiencies of 10:0, 7:3, and 5:5 were 53.4 ± 9.3%, 61.3 ± 0.5%, and 78.7 ± 1.66%, respectively. The release rates of PTX from 7:3 and 5:5 mixed micelles were significantly slower than other formulations. Cytotoxicity assay demonstrated increased cytotoxic activity of PTX-loaded mixed micelles compared to free PTX. The Vd and t1/2ß of PTX-loaded RA-PF127/TPGS (7:3) were increased by 2.61- and 1.27-fold, respectively, while the plasma area under the curve (AUC) of the micelles was 2.03-fold lower than those of Stragen®. Therefore, these novel mixed micelles could be effectively used for delivery of PTX and RA to the cancer cells. Moreover, TPGS as part of micelle composition could enhance the therapeutic effect of PTX and reduce side effects.


Assuntos
Liberação Controlada de Fármacos , Paclitaxel/química , Poloxâmero/química , Polímeros/química , Tretinoína/química , Animais , Composição de Medicamentos , Resistência a Múltiplos Medicamentos , Humanos , Paclitaxel/farmacocinética , Tamanho da Partícula , Polietilenoglicóis , Ratos
14.
Pharm Dev Technol ; 23(1): 41-54, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28608760

RESUMO

To develop an effective therapeutic treatment, the potential of poly (lactic-co-glycolic acid)-polyethylene glycol-retinoic acid (PLGA-PEG-RA) polymeric micelles for targeted delivery of irinotecan to hepatocellular carcinoma (HepG2) and colorectal cancer cell lines (HT-29) was evaluated. PLGA-PEG-RA was synthesized by amide reaction of PLGA with NH2-PEG-NH2 and then PLGA-PEG-NH2 with RA and confirmed by FTIR and 1H NMR spectroscopy. Irinotecan-loaded nanomicelles were prepared using thin-film hydration method and the impact of various formulation variables on their particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), and mean release time (MRT) were assessed using a Taguchi design. TEM was used to observe morphology of the nanomicelles and the CMC was determined by fluorescence spectroscopy. Adopted PLGA-PEG-RA nanomicelle exhibited PS of 160 ± 9.13 nm, PDI of 0.20 ± 0.05, ZP of -24.9 ± 4.03 mV, EE of 83.9 ± 3.61%, MRT of 3.28 ± 0.35 h, and CMC value of 25.7 µg/mL. Cytotoxicity of the targeted nanomicelles on HepG2 and HT-29 cell lines was significantly higher than that of non-targeted nanomicelles and the free drug. These results suggest that PLGA-PEG-RA nanomicelles could be an efficient delivery system of irinotecan for targeted therapy of colorectal cancer and hepatocellular carcinoma.


Assuntos
Camptotecina/análogos & derivados , Ácido Láctico/química , Polietilenoglicóis/química , Poliglactina 910/química , Ácido Poliglicólico/química , Tretinoína/química , Camptotecina/administração & dosagem , Camptotecina/química , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HT29 , Células Hep G2 , Humanos , Irinotecano , Neoplasias Hepáticas/tratamento farmacológico , Micelas , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
15.
J Pharm Pharm Sci ; 18(5): 647-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26670364

RESUMO

A simple, rapid, and sensitive reversed-phase HPLC method was developed and validated for determination of paclitaxel (PTX) in plasma, various organs and tumor tissues of tumor-bearing mice. Tissue specimens of liver, kidneys, spleen, lungs, heart and tumor were separately homogenized in normal saline. Plasma or tissue homogenate (250 µl) containing PTX and internal standard (diazepam) were extracted by diethyl ether (6 ml). The separation was achieved on a µ-Bondapak C18 HPLC column using sodium acetate buffer solution (0.01 M)/acetonitrile (58/42 v/v) at pH 5 ± 0.1 and flow rate of 1.9 mL/min. The effluent was monitored at 227 nm and column temperature was adjusted at 58ºC. The internal standard and PTX were eluted at 4.2 and 5.2 min, respectively and no interfering peaks were observed. Calibration curves were linear over the concentration range of 0.25-10 µg/ml of PTX in plasma and 0.3-20 µg/ml PTX in tissue homogenates with acceptable precision and accuracy (<15%). The mean recoveries of the drug after plasma extraction was 87.4% ± 3.6 while those of tissue homogenates ranged from 62.1± 4.5 to 75.5± 3.2 depending on the type of tissues studied. PTX was stable in samples with no evidence of degradation during 3 freeze-thaw cycles and 3 months storage at -70 °C. The developed HPLC method was applied to quantify PTX in the mouse plasma and tissues after intravenous administration of 10 mg equivalent PTX/Kg dose of PTX-loaded tocopherol succinate-chitosan-polyethylene glycol-folate (TS-CS-PEG-FA) micelles formulation or Anzatax® (Cremophor® EL- based formulation of PTX) to female Balb/c mice.


Assuntos
Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/farmacocinética , Paclitaxel/análise , Paclitaxel/farmacocinética , Animais , Calibragem , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Feminino , Limite de Detecção , Extração Líquido-Líquido , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Neoplasias Experimentais/metabolismo , Padrões de Referência , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Distribuição Tecidual
16.
Drug Dev Ind Pharm ; 41(7): 1137-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25019502

RESUMO

The aim of this study was to develop chitosan derivative polymeric micelles for co-delivery of paclitaxel (PTX) and α-tocopherol succinate (α-TS) to the cancer cells to improve the therapeutic efficiency and reduce side effects of PTX. In this study, amphiphilic tocopheryl succinate-grafted chitosan oligosaccharide was synthesized and physically loaded by PTX and α-TS with entrapment efficiency of 67.9% and 73.2%, respectively. Physical incorporation of α-TS into the micelles increased the hydrophobic interaction between PTX and the micelles core, which improved micelle stability, reduced the micelle size and also sustained the PTX release from the micelles. The mean particle size and zeta potential of αTS/PTX-loaded micelles were about 133 nm and +25.2 mV, respectively, and PTX release was completed during 6-9 d from the micelles. Furthermore, the cytotoxicity of α-TS/PTX-loaded micelles against human ovarian cancer cell line cancer cell in vitro was higher than that of PTX-loaded micelles and the free drug solution. Half maximal inhibitory concentration values of PTX after 48-h exposure of the cells to the PTX-loaded micelles modified and unmodified with α-TS were 110 and 188 ng/ml, respectively.


Assuntos
Quitosana/química , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , alfa-Tocoferol/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Portadores de Fármacos/química , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Oligossacarídeos/química , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Tamanho da Partícula , alfa-Tocoferol/farmacologia
17.
Pharm Dev Technol ; 20(2): 183-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24219091

RESUMO

Haloperidol (Hal) is a ligand that can target sigma 2 receptors over-expressed in non-small cell lung cancer. Hal targeted nanoparticles of bovine serum albumin (BSA) were prepared for pulmonary delivery of doxorubicin (DOX). The conjugation was confirmed by Fourier transform infrared spectroscopy (FTIR) and (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic methods. Nanoparticles were prepared by desolvation method from BSA-Hal and were loaded with DOX. They were characterized for their morphology, particle size, zeta potential, drug loading and release efficiency. The optimized nanoparticles were spray-dried using trehalose, l-leucin and mannitol as dry powder inhaler (DPI) in different inlet temperatures between 80 and 120°C. The obtained nanocomposites were characterized for their aerodynamic diameter, specific surface area (cm(2)/g) and fine particle fraction (FPF) by a Cascade Impactor device. The optimized nanoparticles showed particle size of 218 nm, zeta potential of -25.4 mV, drug entrapment efficiency of 89% and release efficiency of 56% until 2 h. After spray drying of these nanoparticles, the best results were obtained from mannitol with an inlet temperature of 80°C which produced a mean aerodynamic diameter of 4.58 µm, FPF of 66% and specific surface area of 6302.99 cm(2)/g. The obtained results suggest that the designed DPI could be a suitable inhaler for targeted delivery of DOX in pulmonary delivery.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Inaladores de Pó Seco , Haloperidol/química , Nanopartículas/química , Soroalbumina Bovina/química , Administração por Inalação , Antibióticos Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Fármacos , Liberação Controlada de Fármacos , Estudos de Viabilidade , Haloperidol/farmacologia , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Receptores sigma/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
Chem Biol Drug Des ; 103(1): e14399, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011915

RESUMO

One of the chief pathways to regulate p53 levels is MDM2 protein, which negatively controls p53 by direct inhibition. Many cancers overproduce MDM2 protein to interrupt p53 functions. Therefore, impeding MDM2's binding to p53 can reactivate p53 in tumor cells may suggest an effective approach for tumor therapy. Here, some Monastrol derivatives were designed in silico as MDM2 inhibitors, and their initial cytotoxicity was evaluated in vitro on MFC-7 and MDA-MB-231 cells. A small library of Monastrol derivatives was created, and virtual screening (VS) was performed on them. The first-ranked compound, which was extracted from VS, and the other six compounds 5a-5f were selected to carry out the single-docking and docking with explicit waters. The compound with the best average results was then subjected to molecular dynamic (MD) simulation. Compounds 5a-5f were chemically synthesized and evaluated in vitro for their initial cytotoxicity on MFC-7 and MDA-MB-231 cells by MTT assay. The best compound was compound 5d with ΔGave = -10.35 kcal/mol. MD simulation revealed a median potency in comparison with Nutlin-3a. The MTT assay confirmed the docking and MD experiments. 5d has an IC50 of 60.09 µM on MCF-7 cells. We attempted to use Monastrol scaffold as a potent inhibitor of MDM2 rather than an Eg5 inhibitor using in silico modification. The results obtained from the in silico and in vitro evaluations were noteworthy and warranted much more effort in the future.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2 , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Pirimidinas/farmacologia , Tionas , Simulação de Acoplamento Molecular , Antineoplásicos/química , Linhagem Celular Tumoral
19.
Int J Biol Macromol ; 269(Pt 1): 131971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705336

RESUMO

A dual pH/temperature sensitive core-shell nanoformulation has been developed based on ZIF-8 coated with chitosan-poly(N-isopropyl acrylamide) (CS-PNIPAAm) for co-delivery of doxorubicin (DOX) and carboplatin (CBP) in breast cancer cells. The resulting nanoparticles (NPs) had particle sizes around 200 nm and a zeta potential of about +30 mV. The CBP and DOX loading contents in the final NPs were 11.6 % and 55.54 %, respectively. NPs showed a pH and thermoresponsive drug release profile with a sustained prolonged release under physiological conditions. The in vitro cytotoxicity experiments showed a significant synergism of CBP and DOX to induce the IC50 of 1.96 µg/mL in MCF-7 cells and 4.54 µg/mL in MDA-MB-231 cells. Also, the final NPs were safer than free DOX and CBP on normal cells. The in vitro study confirmed the higher potency of the designed NPs in combination therapy against breast cancer cells with lower side effects than free drugs.


Assuntos
Resinas Acrílicas , Neoplasias da Mama , Carboplatina , Quitosana , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Nanopartículas , Humanos , Quitosana/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Concentração de Íons de Hidrogênio , Nanopartículas/química , Resinas Acrílicas/química , Feminino , Carboplatina/farmacologia , Carboplatina/química , Portadores de Fármacos/química , Células MCF-7 , Linhagem Celular Tumoral , Temperatura , Imidazóis/química , Imidazóis/farmacologia , Estruturas Metalorgânicas/química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Tamanho da Partícula
20.
Daru ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106020

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the CNS. Riluzole and dimethyl fumarate (DMF) are two FDA-approved drugs to treat amyotrophic lateral sclerosis (ALS) and MS. Riluzole (a benzothiazole derivative) inhibits glutamate release from nerve terminals by antagonizing the N-Methyl-D-Aspartate (NMDA) receptor, and DMF upregulates anti-oxidative pathways. OBJECTIVES: Herein, using molecular hybridization strategy, we synthesized some new hybrid structures of Riluzole and DMF through some common successive synthetic pathways for evaluating their potential activity for remyelination in MS treatment. METHODS: Molecular docking experiments assessed the binding affinity of proposed structures to the NMDA active site. The designed structures were synthesized and purified based on well-known chemical synthesis procedures. Afterward, in vivo evaluation for their activity was done in the C57Bl/6 Cuprizone-induced demyelination MS model. RESULTS AND CONCLUSION: The proposed derivatives were recognized to be potent enough based on docking studies (ΔGbind of all derivatives were -7.2 to -7.52 compare to the Ifenprodil (-6.98) and Riluzole (-4.42)). The correct structures of desired derivatives were confirmed using spectroscopic methods. Based on in vivo studies, D4 and D6 derivatives exhibited the best pharmacological results, although only D6 showed a statistically significant difference compared to the control. Also, for D4 and D6 derivatives, myelin staining confirmed reduced degeneration in the corpus callosum. Consequently, D4 and D6 derivatives are promising candidates for developing new NMDA antagonists with therapeutic value against MS disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA