Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(47)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163872

RESUMO

Quercetin (Qc) possesses anti-cancer properties, such as cell signaling, growth suppression, pro-apoptotic, anti-proliferative, and antioxidant effects. In this study, we developed an alginate-modified ZIF-8 (Alg@ZIF-8) to enhance the anti-tumor efficacy of Qc. The developed alginate-modified quercetin-loaded ZIF-8 (Alg@Qc@ZIF-8) was characterized using scanning electron microscope (SEM), dynamic light scattering (DLS), fourier transform infrared spectroscopy Thermogravimetric analysis, Brunauer-Emmett-Teller, and x-ray diffraction. The drug release pattern was evaluated at pH 5.4 and 7.4. The cytotoxicity of nanoparticles was assessed on the 4T1 cell line. Finally, the anti-tumor activity of Alg@Qc@ZIF-8 was evaluated in 4T1 tumor-bearing mice. SEM showed that the nanoparticles were spherical with a diameter of mainly below 50 nm. The DLS showed that the developed nanoparticles' hydrodynamic diameter, zeta potential, and polydispersity index were 154.9 ± 7.25 nm, -23.8 ± 5.33 mV, and 0.381 ± 0.09, respectively. The drug loading capacity was 10.40 ± 0.02%. Alg@Qc@ZIF-8 exhibited pH sensitivity, releasing more Qc at pH 5.4 (about 3.62 times) than at pH 7.4 after 24 h. Furthermore, the IC50value of Alg@Qc@ZIF-8 on the 4T1 cell line was 2.16 times lower than net Qc. Importantly, in tumor-bearing mice, Alg@Qc@ZIF-8 demonstrated enhanced inhibitory effects on tumor growth and lung metastasis compared to net Qc. Considering thein vitroandin vivooutcomes, Alg@Qc@ZIF-8 might hold great potential for effective breast cancer management.


Assuntos
Alginatos , Antineoplásicos , Estruturas Metalorgânicas , Nanocompostos , Quercetina , Quercetina/farmacologia , Quercetina/química , Animais , Nanocompostos/química , Alginatos/química , Alginatos/farmacologia , Camundongos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Feminino , Camundongos Endogâmicos BALB C , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imidazóis
2.
Artigo em Inglês | MEDLINE | ID: mdl-39317912

RESUMO

Methotrexate (MTX), a frequently used chemotherapeutic agent, has limited water solubility, leading to rapid clearance even in local injections. In the present study, we developed folic acid-conjugated BSA-stabilized selenium-ZIF-8 core/shell nanoparticles for targeted delivery of MTX to combat breast cancer. FT-IR, XRD, SEM, TEM, and elemental mapping analysis confirmed the successful formation of FA-BSA@MTX@Se@ZIF-8. The developed nano-DDS had a mean diameter, polydispersity index, and zeta potential of 254.8 nm, 0.17, and - 16.5 mV, respectively. The release behavior of MTX from the nanocarriers was pH-dependent, where the cumulative release percentage at pH 5.4 was higher than at pH 7.4. BSA significantly improved the blood compatibility of nanoparticles so that after modifying their surface with BSA, the percentage of hemolysis decreased from 12.67 to 5.12%. The loading of methotrexate in BSA@Se@ZIF-8 nanoparticles reduced its IC50 on 4T1 cells from 40.29 µg/mL to 16.54 µg/mL, and by conjugating folic acid on the surface, this value even decreased to 12.27 µg/mL. In vivo evaluation of the inhibitory effect in tumor-bearing mice showed that FA-BSA@MTX@Se@ZIF-8 caused a 2.8-fold reduction in tumor volume compared to the free MTX, which is due to the anticancer effect of selenium nanoparticles, the pH sensitivity of ZIF-8, and the presence of folic acid on the surface as a targeting agent. More importantly, histological studies and animal body weight monitoring confirmed that developed nano-DDS does not have significant organ toxicity. Taking together, the incorporation of chemotherapeutics in folic acid-conjugated BSA-stabilized selenium-ZIF-8 nanoparticles may hold a significant impact in the field of future tumor management.

3.
J Biomater Sci Polym Ed ; 35(15): 2294-2314, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39037940

RESUMO

In this study, a bovine serum albumin-decorated zeolitic imidazolate framework (ZIF-8@BSA) was used to enhance the anticancer and antimetastatic properties of methotrexate. SEM, DLS, FT-IR, and XRD confirmed the physicochemical suitability of the developed nanoparticles. According to the SEM analysis, the mean size of ZIF-8 nanoparticles was 68.5 ± 13.31 nm. The loading capacity and encapsulation efficiency of MTX@ZIF-8@BSA were 28.77 ± 2.54% and 96.3 ± 0.67%, respectively. According to the in vitro hemolysis test, MTX@ZIF-8@BSA showed excellent blood compatibility. MTX@ZIF-8@BSA exhibited pH sensitivity, releasing more MTX at pH 5.4 (1.73 times) than at pH 7.4. The IC50 value of MTX@ZIF-8@BSA on 4T1 cells was 32.7 ± 7.3 µg/mL after 48 h of treatment, outperforming compared to free MTX with an IC50 value of 53.3 ± 3.7 µg/mL. Treatment with MTX@ZIF-8@BSA resulted in superior tumor growth suppression in tumor-bearing mice than free MTX. Furthermore, based on histopathology tests, MTX@ZIF-8@BSA reduced the metastasis in lung and liver tissues. While there was not any noticeable toxicity in the vital organs of MTX@ZIF-8@BSA-receiving mice, free methotrexate resulted in severe toxicity in the kidneys and liver. According to the preliminary in vitro and in vivo findings, MTX@ZIF-8@BSA presents an attractive drug delivery system candidate for breast cancer due to its enhanced antitumor efficacy and lower toxicity.


Assuntos
Portadores de Fármacos , Metotrexato , Nanopartículas , Soroalbumina Bovina , Metotrexato/química , Metotrexato/farmacologia , Metotrexato/administração & dosagem , Animais , Soroalbumina Bovina/química , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Zeolitas/química , Zeolitas/farmacologia , Hemólise/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Bovinos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Imidazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA