Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 159(7): 1652-64, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525882

RESUMO

The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses envelope stress and activates the signaling cascade. RcsF interacts with BamA, the major component of the ß-barrel assembly machinery. In growing cells, BamA continuously funnels RcsF through the ß-barrel OmpA, displaying RcsF on the cell surface. This process spatially separates RcsF from the downstream Rcs component, which we show is the inner membrane protein IgaA. The Rcs system is activated when BamA fails to bind RcsF and funnel it to OmpA. Newly synthesized RcsF then remains periplasmic, interacting with IgaA to activate the cascade. Thus RcsF senses envelope damage by monitoring the activity of the Bam machinery.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Parede Celular/química , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
BMC Microbiol ; 15: 135, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141380

RESUMO

BACKGROUND: In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS: The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS: The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Genes Essenciais , Helicobacter pylori/química , Família Multigênica , Oxirredução , Proteína Dissulfeto Redutase (Glutationa)/química , Isomerases de Dissulfetos de Proteínas/química , Redobramento de Proteína , Ribonucleases/química
3.
BMC Microbiol ; 11: 166, 2011 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-21787430

RESUMO

BACKGROUND: Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. RESULTS: In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. CONCLUSIONS: The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows that synthesis of the DsbI membrane oxidoreductase is controlled by a translational coupling mechanism. The dba expression is not only essential for the translation of the downstream dsbI gene, but also Dba protein that is produced might regulate the activity and/or stability of DsbI.


Assuntos
Campylobacter jejuni/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Biossíntese de Proteínas , Isomerases de Dissulfetos de Proteínas/biossíntese , Proteínas Repressoras/metabolismo , Transcrição Gênica , Campylobacter jejuni/genética , Humanos
4.
Infect Immun ; 78(3): 1229-38, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20038539

RESUMO

Campylobacter infection in humans is accompanied by severe inflammation of the intestinal mucosa, in contrast to colonization of chicken. The basis for the differential host response is unknown. Toll-like receptors (TLRs) sense and respond to microbes in the body and participate in the induction of an inflammatory response. Thus far, the interaction of Campylobacter with chicken TLRs has not been studied. Here, we investigated the potential of four Campylobacter strains to activate human TLR1/2/6, TLR4, TLR5, and TLR9 and chicken TLR2t2/16, TLR4, TLR5, and TLR21. Live bacteria showed no or very limited potential to activate TLR2, TLR4, and TLR5 of both the human and chicken species, with minor but significant differences between Campylobacter strains. In contrast, lysed bacteria induced strong NF-kappaB activation through human TLR1/2/6 and TLR4 and chicken TLR2t2/16 and TLR4 but not via TLR5 of either species. Interestingly, C. jejuni induced TLR4-mediated beta interferon in human but not chicken cells. Furthermore, isolated chromosomal Campylobacter DNA was unable to activate human TLR9 in our system, whereas chicken TLR21 was activated by DNA from all of the campylobacters tested. Our data are the first comparison of TLR-induced immune responses in humans and chickens. The results suggest that differences in bacterial cell wall integrity and in TLR responses to Campylobacter LOS and/or DNA may contribute to the distinct clinical manifestation between the species.


Assuntos
Infecções por Campylobacter/imunologia , Infecções por Campylobacter/veterinária , Campylobacter/imunologia , Portador Sadio/imunologia , Portador Sadio/veterinária , Galinhas/imunologia , Receptores Toll-Like/imunologia , Animais , Bactérias , Campylobacter jejuni , DNA Bacteriano/imunologia , Humanos , Lipopolissacarídeos/imunologia
5.
Expert Rev Proteomics ; 6(3): 315-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19489702

RESUMO

Infectious diseases still remain the main cause of human premature deaths, especially in developing countries. Vaccines constitute the most cost-effective tool for prophylaxis of infectious diseases. Elucidation of the complete genomes of many bacterial pathogens has provided a new blueprint for the search of novel vaccine candidates. At the same time, it was a turning point in the development of transcriptomics and proteomics. This article concentrates on the proteomic contribution to vaccinology, pointing out relationships between genomic, transcriptomic and proteomic approaches and describing how they complement one another. It also highlights the recent proteomic techniques applied to antigen identification, their capabilities and limitations, as well as the strategies that are taken to overcome technical difficulties and to refine applied methods. Finally, some recent experimental data concerning the proteomic/immunoproteomic influence on identification of vaccine candidates to prevent human infections caused by Streptococcus spp., as well as by a major bioterrorist agent, Bacillus anthracis is presented.


Assuntos
Bactérias/imunologia , Vacinas Bacterianas/imunologia , Desenho de Fármacos , Proteômica , Perfilação da Expressão Gênica , Células Procarióticas/metabolismo
6.
Pol J Microbiol ; 58(4): 281-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20380137

RESUMO

Tuberculosis is a serious infection disease which causes more than two million deaths annually. The TB pandemic has continued despite widespread use of the only available licensed TB vaccine--Bacillus Calmette-Guerin (BCG). Additionally, the increasing incidences of multidrug resistant strains and coinfection with HIV mean that tuberculosis constitutes a growing global threat. Thus, improvement of the vaccination strategy against TB is an urgent need, requiring international cooperation of the research community. The completion of many mycobacterial genome sequences has greatly facilitated the global analysis at the transcriptome and proteome level. This in consequence has accelerated progress in the vaccinology field resulting in identification of a large numbers of antigens with potential in TB vaccines. This review concentrates on the proteomic contribution to TB vaccinology. At the end of the article some recent achievements of structural proteomics and developing an epitope-driven tuberculosis vaccine are presented.


Assuntos
Mycobacterium tuberculosis/metabolismo , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Humanos , Mycobacterium tuberculosis/genética , Proteômica , Tuberculose/epidemiologia
7.
Postepy Biochem ; 52(4): 424-34, 2006.
Artigo em Polonês | MEDLINE | ID: mdl-17536512

RESUMO

Helicobacter pylori, Gram-negative spiral-shaped bacteria, member of epsilon-Proteobacteria, colonizes the gastric mucosa of humans. H. pylori has been identified as the causative agent of chronic inflammation, chronic gastritis and peptic ulceration and is considered a risk factor for the development of mucosa-associated lymphoid tissue lymphoma and adenocarcinoma of the stomach. Although more than 50% of human population is infected with H. pylori only a subset develops disease. The completion of two H. pylori genome sequences revealed the enormous strain heterogeneity and permitted comparative proteome analysis. Immunoproteomics, a novel strategy combining standard proteomics with immunological screening, is currently method of choice for identification of new antigens of diagnostic and protective values. Highly specific antigens will be used as biomarkers of different pathology induced by H. pylori infection whereas novel highly immunogenic, conserved, abundant and surface-located proteins will facilitate efficient anti-Helicobacter vaccine construction.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/química , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Vacinas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Gatos , Cães , Gastrite/sangue , Gastrite/diagnóstico , Gastrite/imunologia , Gastrite/microbiologia , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Camundongos , Úlcera Péptica/diagnóstico , Úlcera Péptica/imunologia , Úlcera Péptica/microbiologia , Úlcera Péptica/prevenção & controle , Proteômica , Soro/química , Soro/imunologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/prevenção & controle , Vacinas/classificação , Fatores de Virulência/imunologia
8.
J Leukoc Biol ; 100(6): 1363-1373, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27418354

RESUMO

LPS binds sequentially to CD14 and TLR4/MD2 receptor triggering production of proinflammatory mediators. The LPS-induced signaling is controlled by a plasma membrane lipid PI(4,5)P2 and its derivatives. Here, we show that stimulation of murine peritoneal macrophages with LPS induces biphasic accumulation of PI(4,5)P2 with peaks at 10 and 60-90 min that were still seen after silencing of TLR4 expression. In contrast, the PI(4,5)P2 elevation was abrogated when CD14 was removed from the cell surface. To assess the contribution of CD14 and TLR4 to the LPS-induced PI(4,5)P2 changes, we used HEK293 transfectants expressing various amounts of CD14 and TLR4. In cells with a low content of CD14 and high of TLR4, no accumulation of PI(4,5)P2 occurred. With an increasing amount of CD14 and concomitant decrease of TLR4, 2 peaks of PI(4,5)P2 accumulation appeared, eventually approaching those found in LPS-stimulated cells expressing CD14 alone. Mutation of the signaling domain of TLR4 let us conclude that the receptor activity can modulate PI(4,5)P2 accumulation in cells when expressed in high amounts compared with CD14. Among the factors limiting PI(4,5)P2 accumulation are its hydrolysis, phosphorylation, and availability of its precursor, PI(4)P. Inhibition of PLC and PI3K or overexpression of PI4K IIα that produces PI(4)P promoted PI(4,5)P2 elevation in LPS-stimulated cells. The elevation of PI(4,5)P2 was dispensable for TLR4 signaling yet enhanced its magnitude. Taken together, these data suggest that LPS-induced accumulation of PI(4,5)P2 that maximizes TLR4 signaling is controlled by CD14, whereas TLR4 can fine tune the process by affecting the PI(4,5)P2 turnover.


Assuntos
Receptores de Lipopolissacarídeos/fisiologia , Fosfatidilinositol 4,5-Difosfato/biossíntese , Receptor 4 Toll-Like/fisiologia , Animais , Genes Reporter , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Lipoilação , Ativação Linfocitária , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/metabolismo , NF-kappa B/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Organismos Livres de Patógenos Específicos , Receptor 4 Toll-Like/antagonistas & inibidores
9.
PLoS One ; 7(10): e46563, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056345

RESUMO

BACKGROUND: The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide. METHODS AND RESULTS: The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells. CONCLUSION: Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.


Assuntos
Helicobacter pylori/enzimologia , Oxirredutases/metabolismo , Teste de Complementação Genética , Helicobacter pylori/genética , Microscopia Eletrônica de Transmissão , Mutagênese , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA