Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791119

RESUMO

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Assuntos
Furina , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas , Furina/antagonistas & inibidores , Furina/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Antivirais/farmacologia , Antivirais/química , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Avaliação Pré-Clínica de Medicamentos/métodos
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902222

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent responsible for the worldwide pandemic and has now claimed millions of lives. The virus combines several unusual characteristics and an extraordinary ability to spread among humans. In particular, the dependence of the maturation of the envelope glycoprotein S from Furin enables the invasion and replication of the virus virtually within the entire body, since this cellular protease is ubiquitously expressed. Here, we analyzed the naturally occurring variation of the amino acids sequence around the cleavage site of S. We found that the virus grossly mutates preferentially at P positions, resulting in single residue replacements that associate with gain-of-function phenotypes in specific conditions. Interestingly, some combinations of amino acids are absent, despite the evidence supporting some cleavability of the respective synthetic surrogates. In any case, the polybasic signature is maintained and, as a consequence, Furin dependence is preserved. Thus, no escape variants to Furin are observed in the population. Overall, the SARS-CoV-2 system per se represents an outstanding example of the evolution of substrate-enzyme interaction, demonstrating a fast-tracked optimization of a protein stretch towards the Furin catalytic pocket. Ultimately, these data disclose important information for the development of drugs targeting Furin and Furin-dependent pathogens.


Assuntos
COVID-19 , Furina , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Furina/metabolismo , Mutação , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Catálise , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Emerg Infect Dis ; 27(2): 658-660, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496646

RESUMO

We report 3 cases of Puumala virus infection in a family in Switzerland in January 2019. Clinical manifestations of the infection ranged from mild influenza-like illness to fatal disease. This cluster illustrates the wide range of clinical manifestations of Old World hantavirus infections and the challenge of diagnosing travel-related hemorrhagic fevers.


Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Virus Puumala/genética , Suíça/epidemiologia , Viagem , Doença Relacionada a Viagens
4.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626681

RESUMO

Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Clotrimazol/farmacologia , Fusão de Membrana/efeitos dos fármacos , Células A549 , Animais , Infecções por Arenaviridae/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Endocitose/efeitos dos fármacos , Células HEK293 , Células HeLa , Febres Hemorrágicas Virais/tratamento farmacológico , Febres Hemorrágicas Virais/virologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Vírus Lassa/efeitos dos fármacos , Células Vero , Proteínas do Envelope Viral/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
5.
J Virol ; 89(12): 6240-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25833049

RESUMO

UNLABELLED: Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE: Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with the induction of programmed cell death, or apoptosis, in response to superinfection with cytopathic RNA viruses. Upon viral challenge, persistent LCMV efficiently blocked induction of interferons, whereas virus-induced apoptosis remained fully active in LCMV-infected cells. Our studies reveal that the persistent virus is able to reshape innate apoptotic signaling in order to prevent interferon production while maintaining programmed cell death as a strategy for innate defense. The differential effect of persistent virus on the interferon response versus its effect on apoptosis appears as a subtle strategy to guarantee sufficiently high viral loads for efficient transmission while maintaining apoptosis as a mechanism of defense.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Interferon Tipo I/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Camundongos , Receptores Imunológicos
6.
Cell Microbiol ; 15(5): 689-700, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23279385

RESUMO

The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.


Assuntos
Distroglicanas/metabolismo , Matriz Extracelular/virologia , Febre Lassa/genética , Vírus Lassa/patogenicidade , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/virologia , Matriz Extracelular/metabolismo , Humanos , Febre Lassa/virologia , Vírus Lassa/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Tirosina/genética , Tirosina/metabolismo , Utrofina/genética , Utrofina/metabolismo
7.
J Infect ; 89(4): 106237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39121969

RESUMO

BACKGROUND: Unlike adults, children experienced stronger and longer vector replication in plasma and shedding in saliva following rVSVΔG-ZEBOV-GP vaccination. The resulting risks of immunosuppression or immune hyperactivation leading to increased Adverse Events (AEs) and altered antibody responses are concerns that have been addressed in the present manuscript. METHODS: Children aged 1-12 years living in Gabon received either rVSVΔG-ZEBOV-GP (ERVEBO®) vaccine or the varicella-zoster virus (VZV) vaccine (VZV). The concentration of rVSVΔG vector in blood and saliva, the occurrence of AEs up to day 28; the anti-rVSVΔG-ZEBOV-GP and anti-VZV IgG antibody titres, neutralising and avidity functions of anti-rVSVΔG-ZEBOV-GP by day 365; were assessed in serum. (PACTR202005733552021) FINDINGS: In the rVSVΔG-ZEBOV-GP group, 70% and 7% of children had >0 copies/ml of rVSVΔG respectively in plasma by day 3 and in saliva by day 14 after vaccination, with no detection on day 28. Significantly higher but transient AEs occurred in the rVSVΔG-ZEBOV-GP group. Both vaccines induced seroconversion on day 28 and sustainable IgG antibody titres by day 365. Avidity and neutralisation functions of the anti-rVSVΔG-ZEBOV-GP antibodies peaked at day 28 and were maintained by day 365. INTERPRETATION: The replication and shedding do not affect the favourable risk-benefit balance of the rVSVΔG-ZEBOV-GP in children.


Assuntos
Anticorpos Antivirais , Vacinas contra Ebola , Humanos , Gabão , Pré-Escolar , Anticorpos Antivirais/sangue , Masculino , Feminino , Criança , Lactente , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/administração & dosagem , Saliva/imunologia , Saliva/virologia , Ebolavirus/imunologia , Ebolavirus/genética , Imunoglobulina G/sangue , Doença pelo Vírus Ebola/prevenção & controle , Replicação Viral , Imunogenicidade da Vacina , Anticorpos Neutralizantes/sangue , Vacinação , Eliminação de Partículas Virais
8.
J Virol ; 86(15): 7728-38, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22532683

RESUMO

Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.


Assuntos
Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Linhagem Celular Tumoral , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Imunológicos , Vírus Sendai/genética , Vírus Sendai/imunologia , Vírus Sendai/metabolismo
9.
Cell Microbiol ; 14(7): 1122-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22405130

RESUMO

The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with ß1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6ß1 integrins. The virus-induced perturbation of α6ß1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and ß1 integrins.


Assuntos
Distroglicanas/metabolismo , Matriz Extracelular/metabolismo , Vírus Lassa/patogenicidade , Receptores Virais/metabolismo , Transdução de Sinais , Ligação Viral , Linhagem Celular , Humanos , Integrina beta1/metabolismo , Vírus Lassa/fisiologia , Modelos Biológicos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36707198

RESUMO

Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.


Assuntos
COVID-19 , Pró-Proteína Convertases , Humanos , Pró-Proteína Convertases/química , Pró-Proteína Convertases/metabolismo , Pró-Proteína Convertase 9/metabolismo , Furina/metabolismo , Pandemias , Via Secretória , SARS-CoV-2/metabolismo
11.
Viruses ; 15(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005942

RESUMO

When infecting humans, Andes orthohantavirus (ANDV) may cause a severe disease called hantavirus cardiopulmonary syndrome (HCPS). Following non-specific symptoms, the infection may progress to a syndrome of hemorrhagic fever combined with hyper-acute cardiopulmonary failure. The case fatality rate ranges between 25-40%, depending on the outbreak. In this study, we present the follow-up of a male patient who recovered from HCPS six years ago. We demonstrate that the ANDV genome persists within the reproductive tract for at least 71 months. Genome sequence analysis early and late after infection reveals a low number of mutations (two single nucleotide variants and one deletion), suggesting limited replication activity. We can exclude the integration of the viral genome into the host genome, since the treatment of the specimen with RNAse led to a loss of signal. We demonstrate a long-lasting, strong neutralizing antibody response using pseudovirions expressing the ANDV glycoprotein. Taken together, our results show that ANDV has the potential for sexual transmission.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Humanos , Masculino , Orthohantavírus/genética , Sêmen , Anticorpos Neutralizantes , RNA Viral/genética
12.
Clin Microbiol Infect ; 29(12): 1587-1594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661067

RESUMO

OBJECTIVES: To report 5-year persistence and avidity of antibodies produced by the live-attenuated recombinant vesicular stomatitis virus (rVSV) expressing the Zaire Ebolavirus (ZEBOV) glycoprotein (GP), known as rVSV-ZEBOV (Ervebo®). METHODS: Healthy adults vaccinated with 300,000 or 10-50 million plaque-forming units of rVSV-ZEBOV in the WHO-coordinated trials of 2014-2015 were followed for up to 4 (Lambaréné, Gabon) and 5 (Geneva, Switzerland) years. We report seropositivity rates, geometric mean titres (GMTs), and population distribution of ZEBOV-GP ELISA IgG antibodies, neutralizing antibodies (pseudovirus and live-virus neutralization) and antibody avidity; the primary outcome was ZEBOV-GP ELISA IgG GMTs at 4 or 5 years compared with 1 year (Y1) after immunization. RESULTS: Among the 168 eligible vaccinees (Geneva: 97 and Lambaréné: 71) enrolled 1 year post-immunization, 146 (87%) remained enrolled at 4 years (Geneva: n = 88, Lambaréné: n = 58), and 84 (87%, Geneva) at 5 years post-vaccination. ZEBOV-GP ELISA IgG GMTs plateaued, with no declining trend from 1 year through the last time point assessed (1147.8 [95% CI 874.3-1507.0] at Y1 versus 1548.1 [95% CI 1136.6-2108.5] at Y5 in Geneva volunteers receiving ≥10 million plaque-forming units of rVSV-ZEBOV), their avidity matching that of ZEBOV convalescents. Live-virus neutralizing antibodies were detected for shorter periods and in fewer vaccinees (53/95 [56%] at Y1 versus 35/84 [42%] at Y5 in Geneva volunteers, all dose levels). DISCUSSION: Titres at Y1 emerged as a correlate of antibody persistence at Y5. The findings of persistent ZEBOV-GP ELISA IgG titres yet shorter-lasting, lower titres of live-virus neutralizing antibodies suggest the contribution of antibody-mediated protective mechanisms other than neutralization. Long-term clinical efficacy of rVSV-ZEBOV, however, requires further study.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Adulto , Animais , Humanos , Ebolavirus/genética , Formação de Anticorpos , República Democrática do Congo , Anticorpos Antivirais , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Bloqueadores
13.
Viruses ; 14(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36298797

RESUMO

Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Inibidores da Fusão de HIV , Internalização do Vírus , Repetição de Anquirina , Proteínas , Solventes
14.
Nat Biotechnol ; 40(12): 1845-1854, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35864170

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Proteínas de Repetição de Anquirina Projetadas , Microscopia Crioeletrônica , Anticorpos Monoclonais/uso terapêutico , Terapia Combinada de Anticorpos , Anticorpos Neutralizantes
15.
Microorganisms ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203936

RESUMO

Ecological changes, population movements and increasing urbanization promote the expansion of hantaviruses, placing humans at high risk of virus transmission and consequent diseases. The currently limited therapeutic options make the development of antiviral strategies an urgent need. Ribavirin is the only antiviral used currently to treat hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV), even though severe side effects are associated with this drug. We therefore investigated the antiviral activity of favipiravir, a new antiviral agent against RNA viruses. Both ribavirin and favipiravir demonstrated similar potent antiviral activity on HTNV infection. When combined, the efficacy of ribavirin is enhanced through the addition of low dose favipiravir, highlighting the possibility to provide better treatment than is currently available.

16.
Viruses ; 13(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923413

RESUMO

Hemorrhagic fever viruses, among them orthohantaviruses, arenaviruses and filoviruses, are responsible for some of the most severe human diseases and represent a serious challenge for public health. The current limited therapeutic options and available vaccines make the development of novel efficacious antiviral agents an urgent need. Inhibiting viral attachment and entry is a promising strategy for the development of new treatments and to prevent all subsequent steps in virus infection. Here, we developed a fluorescence-based screening assay for the identification of new antivirals against hemorrhagic fever virus entry. We screened a phytochemical library containing 320 natural compounds using a validated VSV pseudotype platform bearing the glycoprotein of the virus of interest and encoding enhanced green fluorescent protein (EGFP). EGFP expression allows the quantitative detection of infection and the identification of compounds affecting viral entry. We identified several hits against four pseudoviruses for the orthohantaviruses Hantaan (HTNV) and Andes (ANDV), the filovirus Ebola (EBOV) and the arenavirus Lassa (LASV). Two selected inhibitors, emetine dihydrochloride and tetrandrine, were validated with infectious pathogenic HTNV in a BSL-3 laboratory. This study provides potential therapeutics against emerging virus infection, and highlights the importance of drug repurposing.


Assuntos
Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Infecções por Hantavirus/tratamento farmacológico , Orthohantavírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Humanos
17.
mBio ; 12(4): e0253120, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34225492

RESUMO

Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nnHTN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nnHTN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Vírus Hantaan/genética , Vírus Hantaan/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Mapeamento de Epitopos , Feminino , Células HEK293 , Infecções por Hantavirus/imunologia , Humanos , Imunização , Coelhos
18.
Virology ; 543: 54-62, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056847

RESUMO

Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvß3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.


Assuntos
Vírus Hantaan/metabolismo , Glicoproteínas de Membrana/metabolismo , Orthohantavírus/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Mucosa Respiratória/virologia , Proteínas do Envelope Viral/metabolismo , Animais , Bacteriocinas/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus Hantaan/efeitos dos fármacos , Vírus Hantaan/patogenicidade , Vírus Hantaan/fisiologia , Orthohantavírus/fisiologia , Haplorrinos , Heparitina Sulfato/farmacologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Mimetismo Molecular , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Mucosa Respiratória/metabolismo , Vesiculovirus/metabolismo , Vesiculovirus/fisiologia , Receptor Tirosina Quinase Axl
19.
Virology ; 531: 57-68, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852272

RESUMO

Hantaviruses are emerging rodent-borne negative-strand RNA viruses associated with severe human diseases. Zoonotic transmission occurs via aerosols of contaminated rodent excreta and cells of the human respiratory epithelium represent likely early targets. Here we investigated cellular factors involved in entry of the pathogenic Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV) into human respiratory epithelial cells. Screening of a kinase inhibitor library using a biocontained recombinant vesicular stomatitis virus pseudotype platform revealed differential requirement for host kinases for HTNV and ANDV entry and provided first hints for an involvement of macropinocytosis. Examination of a selected panel of well-defined inhibitors of endocytosis confirmed that both HTNV and ANDV enter human respiratory epithelial cells via a pathway that critically depends on sodium proton exchangers and actin, hallmarks of macropinocytosis. However, HTNV and ANDV differed in their individual requirements for regulatory factors of macropinocytosis, indicating virus-specific differences.


Assuntos
Endocitose , Células Epiteliais/virologia , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Mucosa Respiratória/virologia , Internalização do Vírus , Linhagem Celular , Células Epiteliais/enzimologia , Orthohantavírus/genética , Infecções por Hantavirus/enzimologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Mucosa Respiratória/metabolismo
20.
Viruses ; 8(5)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27144576

RESUMO

Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic "capping activity". Hantaviruses therefore employ a "cap snatching" strategy acquiring short 5' RNA sequences bearing 5'cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure-function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses.


Assuntos
Endonucleases/metabolismo , Orthohantavírus/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Endonucleases/genética , Orthohantavírus/genética , Modelos Moleculares , Domínios Proteicos , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA