Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 9(9): e1003598, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24068924

RESUMO

The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct "Legionella-containing vacuole" (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Microtúbulos/metabolismo , Fagossomos/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Ativação Enzimática , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Inativação Gênica , Humanos , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Legionella pneumophila/ultraestrutura , Doença dos Legionários/imunologia , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Doença dos Legionários/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mutação , Fagocitose , Fagossomos/enzimologia , Fagossomos/ultraestrutura , Polimerização , Estabilidade Proteica , Transporte Proteico , Replicação Viral , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética
2.
Cell Microbiol ; 16(7): 977-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24397557

RESUMO

The environmental bacterium Legionella pneumophila causes a severe pneumonia termed Legionnaires' disease. L. pneumophila employs a conserved mechanism to replicate within a specific vacuole in macrophages or protozoa such as the social soil amoeba Dictyostelium discoideum. Pathogen-host interactions depend on the Icm/Dot type IV secretion system (T4SS), which translocates approximately 300 different effector proteins into host cells. Here we analyse the effects of L. pneumophila on migration and chemotaxis of amoebae, macrophages or polymorphonuclear neutrophils (PMN). Using under-agarose assays, L. pneumophila inhibited in a dose- and T4SS-dependent manner the migration of D. discoideum towards folate as well as starvation-induced aggregation of the social amoebae. Similarly, L. pneumophila impaired migration of murine RAW 264.7 macrophages towards the cytokines CCL5 and TNFα, or of primary human PMN towards the peptide fMLP respectively. L. pneumophila lacking the T4SS-translocated activator of the small eukaryotic GTPase Ran, Lpg1976/LegG1, hyper-inhibited the migration of D. discoideum, macrophages or PMN. The phenotype was reverted by plasmid-encoded LegG1 to an extent observed for mutant bacteria lacking a functional Icm/Dot T4SS.Similarly, LegG1 promoted random migration of L. pneumophila-infected macrophages and A549 epithelial cells in a Ran-dependent manner, or upon 'microbial microinjection' into HeLa cells by a Yersinia strain lacking endogenous effectors. Single-cell tracking and real-time analysis of L. pneumophila-infected phagocytes revealed that the velocity and directionality of the cells were decreased, and cell motility as well as microtubule dynamics was impaired. Taken together, these findings indicate that the L. pneumophila Ran activator LegG1 and consequent microtubule polymerization are implicated in Icm/Dot-dependent inhibition of phagocyte migration.


Assuntos
Proteínas de Bactérias/metabolismo , Movimento Celular , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Neutrófilos/microbiologia , Animais , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Linhagem Celular , Dictyostelium/microbiologia , Ativadores de Enzimas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/fisiologia , Camundongos , Microtúbulos/metabolismo , Neutrófilos/fisiologia , Transporte Proteico , Proteína ran de Ligação ao GTP/metabolismo
3.
Cell Microbiol ; 16(7): 1034-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24373249

RESUMO

The opportunistic pathogen Legionella pneumophila employs the Icm/Dot type IV secretion system and ∼300 different effector proteins to replicate in macrophages and amoebae in a distinct 'Legionella-containing vacuole' (LCV). LCVs from infected RAW 264.7 macrophages were enriched by immuno-affinity separation and density gradient centrifugation, using an antibody against the L. pneumophila effector SidC, which specifically binds to the phosphoinositide PtdIns(4)P on the pathogen vacuole membrane. The proteome of purified LCVs was determined by mass spectro-metry (data are available via ProteomeXchange with identifier PXD000647). The proteomics analysis revealed more than 1150 host proteins, including 13 small GTPases of the Rab family. Using fluorescence microscopy, 6 novel Rab proteins were confirmed to localize on pathogen vacuoles harbouring wild-type but not ΔicmT mutant L. pneumophila. Individual depletion of 20 GTPases by RNA interference indicated that endocytic GTPases (Rab5a, Rab14 and Rab21) restrict intracellular growth of L. pneumophila, whereas secretory GTPases (Rab8a, Rab10 and Rab32) implicated in Golgi-endosome trafficking promote bacterial replication. Upon silencing of Rab21 or Rab32, fewer LCVs stained positive for Rab4 or Rab9, implicated in secretory or retrograde trafficking respectively. Moreover, depletion of Rab8a, Rab14 or Rab21 significantly decreased the number of SidC-positive LCVs, suggesting that PtdIns(4)P is reduced under these conditions. L. pneumophila proteins identified in purified LCVs included proteins putatively implicated in phosphorus metabolism and as many as 60 Icm/Dot-translocated effectors, which are likely required early during infection. Taken together, the phagocyte and Legionella proteomes of purified LCVs lay the foundation for further hypothesis-driven investigations of the complex process of pathogen vacuole formation.


Assuntos
Legionella pneumophila/fisiologia , Proteoma/metabolismo , Vacúolos/enzimologia , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Dictyostelium/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/enzimologia , Macrófagos/microbiologia , Camundongos , Vacúolos/microbiologia
4.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209684

RESUMO

Legionella pneumophila governs its interactions with host cells by secreting >300 different "effector" proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection.IMPORTANCELegionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in amoebae and macrophages by employing a "type IV" secretion system, which secretes more than 300 different "effector" proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Legionella pneumophila/genética , Proteína ran de Ligação ao GTP/genética , Células A549 , Animais , Dictyostelium/microbiologia , Células HEK293 , Humanos , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Proteína ran de Ligação ao GTP/metabolismo
5.
Small GTPases ; 5(3): 1-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25496424

RESUMO

Legionella spp. are amoebae-resistant environmental bacteria that replicate in free-living protozoa in a distinct compartment, the Legionella-containing vacuole (LCV). Upon transmission of Legionella pneumophila to the lung, the pathogens employ an evolutionarily conserved mechanism to grow in LCVs within alveolar macrophages, thus triggering a severe pneumonia termed Legionnaires' disease. LCV formation is a complex and robust process, which requires the bacterial Icm/Dot type IV secretion system and involves the amazing number of 300 different translocated effector proteins. LCVs interact with the host cell's endosomal and secretory vesicle trafficking pathway. Accordingly, in a proteomics approach as many as 12 small Rab GTPases implicated in endosomal and secretory vesicle trafficking were identified and validated as LCV components. Moreover, the small GTPase Ran and its effector protein RanBP1 have been found to decorate the pathogen vacuole. Ran regulates nucleo-cytoplasmic transport, spindle assembly, and cytokinesis, as well as the organization of non-centrosomal microtubules. In L. pneumophila-infected amoebae or macrophages, Ran and RanBP1 localize to LCVs, and the small GTPase is activated by the Icm/Dot substrate LegG1. Ran activation by LegG1 leads to microtubule stabilization and promotes intracellular pathogen vacuole motility and bacterial growth, as well as chemotaxis and migration of Legionella-infected cells.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/fisiologia , Vacúolos/fisiologia , Proteína ran de Ligação ao GTP/metabolismo , Amoeba/microbiologia , Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Microtúbulos/metabolismo , Vacúolos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA