Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(13): 1231-1241, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38145560

RESUMO

ABSTRACT: Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.


Assuntos
Imunoterapia Adotiva , Linfoma de Células T , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T , Doença Crônica , Linfoma de Células T/tratamento farmacológico , Antígenos CD19
2.
Blood ; 140(1): 16-24, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325065

RESUMO

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.


Assuntos
Neoplasias Hematológicas , Neoplasias , Adulto , Criança , Seguimentos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Leucócitos Mononucleares , Neoplasias/genética , Neoplasias/terapia , Estudos Retrospectivos
3.
Cytotherapy ; 26(9): 1026-1032, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38819365

RESUMO

BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.


Assuntos
Imunoterapia Adotiva , Leucemia , Linfoma , Humanos , Masculino , Feminino , Adulto , Leucemia/terapia , Leucemia/imunologia , Leucemia/complicações , Criança , Pessoa de Meia-Idade , Linfoma/terapia , Linfoma/imunologia , Linfoma/complicações , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Adolescente , Trombocitopenia/terapia , Trombocitopenia/etiologia , Trombocitopenia/imunologia , Estudos Retrospectivos , Idoso , Neutropenia/imunologia , Neutropenia/etiologia , Neutropenia/terapia , Pré-Escolar , Depleção Linfocítica , Adulto Jovem , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Citopenia
4.
Haematologica ; 108(3): 747-760, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263840

RESUMO

Here we present the 3-year results of ZUMA-4, a phase I/II multicenter study evaluating the safety and efficacy of KTEX19, an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, in pediatric/adolescent patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Phase I explored two dose levels and formulations. The primary endpoint was the incidence of dose-limiting toxicities. Thirty-one patients were enrolled; KTE-X19 was administered to 24 patients (median age 13.5 years, range 3-20; median follow-up 36.1 months). No dose-limiting toxicities were observed. All treated patients had grade ≥3 adverse events, commonly hypotension (50%) and anemia (42%). Grade 3 cytokine release syndrome rates were 33% in all treated patients, 75% in patients given the dose of 2×106 CAR T cells/kg, 27% in patients given the dose of 1×106 cells/kg in the 68 mL formulation, and 22% in patients given the dose of 1×106 cells/kg in the 40 mL formulation; the percentages of patients experiencing grade ≥3 neurologic events were 21%, 25%, 27%, and 11% respectively. Overall complete remission rates (including complete remission with incomplete hematologic recovery) were 67% in all treated patients, 75% in patients given 2×106 CAR T cells/kg, 64% in patients given 1×106 cells/kg in the 68 mL formulation, and 67% in patients given 1×106 cells/kg in the 40 mL formulation. Overall minimal residual diseasenegativity rates were 100% among responders; 88% of responders underwent subsequent allogeneic stem-cell transplantation. In the 1×106 (40 mL) group (recommended phase II dose), the median duration of remission censored at allogeneic stem-cell transplantation and median overall survival were not reached. Pediatric/adolescent patients with relapsed/refractory B-cell acute lymphoblastic leukemia achieved high minimal residual disease-negative remission rates with a manageable safety profile after a single dose of KTE-X19. Phase II of the study is ongoing at the dose of 1×106 CAR T cells/kg in the 40 mL formulation. ClinicalTrials.gov: NCT02625480.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Adolescente , Humanos , Criança , Pré-Escolar , Adulto Jovem , Adulto , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Antígenos CD19
5.
Blood ; 141(6): 558-560, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757731
6.
Blood ; 132(22): 2351-2361, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30262660

RESUMO

Autologous T cells targeting Epstein-Barr virus (EBV) latent membrane proteins (LMPs) have shown safety and efficacy in the treatment of patients with type 2 latency EBV-associated lymphomas for whom standard therapies have failed, including high-dose chemotherapy followed by autologous stem-cell rescue. However, the safety and efficacy of allogeneic donor-derived LMP-specific T cells (LMP-Ts) have not been established for patients who have undergone allogeneic hematopoietic stem-cell transplantation (HSCT). Therefore, we evaluated the safety and efficacy of donor-derived LMP-Ts in 26 patients who had undergone allogeneic HSCT for EBV-associated natural killer/T-cell or B-cell lymphomas. Seven patients received LMP-Ts as therapy for active disease, and 19 were treated with adjuvant therapy for high-risk disease. There were no immediate infusion-related toxicities, and only 1 dose-limiting toxicity potentially related to T-cell infusion was seen. The 2-year overall survival (OS) was 68%. Additionally, patients who received T-cell therapy while in complete remission after allogeneic HSCT had a 78% OS at 2 years. Patients treated for B-cell disease (n = 10) had a 2-year OS of 80%. Patients with T-cell disease had a 2-year OS of 60%, which suggests an improvement compared with published posttransplantation 2-year OS rates of 30% to 50%. Hence, this study shows that donor-derived LMP-Ts are a safe and effective therapy to prevent relapse after transplantation in patients with B cell- or T cell-derived EBV-associated lymphoma or lymphoproliferative disorder and supports the infusion of LMP-Ts as adjuvant therapy to improve outcomes in the posttransplantation setting. These trials were registered at www.clinicaltrials.gov as #NCT00062868 and #NCT01956084.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Transplante de Células-Tronco Hematopoéticas/métodos , Herpesvirus Humano 4/imunologia , Linfoma de Células B/terapia , Linfoma de Células T/terapia , Recidiva Local de Neoplasia/prevenção & controle , Linfócitos T/transplante , Adolescente , Adulto , Criança , Pré-Escolar , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Herpesvirus Humano 4/isolamento & purificação , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Linfoma de Células T/imunologia , Linfoma de Células T/virologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Linfócitos T/imunologia , Transplante Homólogo/métodos , Resultado do Tratamento , Proteínas da Matriz Viral/imunologia , Adulto Jovem
7.
Mol Ther ; 27(1): 272-280, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391141

RESUMO

Chimeric antigen receptor (CAR) T cell therapy for the treatment of acute myeloid leukemia (AML) has the risk of toxicity to normal myeloid cells. CD7 is expressed by the leukemic blasts and malignant progenitor cells of approximately 30% of AML patients but is absent on normal myeloid and erythroid cells. Since CD7 expression by malignant blasts is also linked with chemoresistance and poor outcomes, targeting this antigen may be beneficial for this subset of AML patients. Here, we show that expression of a CD7-directed CAR in CD7 gene-edited (CD7KO) T cells effectively eliminates CD7+ AML cell lines, primary CD7+ AML, and colony-forming cells but spares myeloid and erythroid progenitor cells and their progeny. In a xenograft model, CD7 CAR T cells protect mice against systemic leukemia, prolonging survival. Our results support the feasibility of using CD7KO CD7 CAR T cells for the non-myeloablative treatment of CD7+ AML.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Animais , Antígenos CD7/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células Mieloides/metabolismo , Linfócitos T/metabolismo
8.
J Transl Med ; 17(1): 240, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340822

RESUMO

BACKGROUND: The use of "off-the-shelf" cellular therapy products derived from healthy donors addresses many of the challenges associated with customized cell products. However, the potential of allogeneic cell products to produce graft-versus-host disease (GVHD), and their likely rejection by host alloreactive T-cells are major barriers to their clinical safety and efficacy. We have developed a molecule that when expressed in T-cells, can eliminate alloreactive T-cells and hence can be used to protect cell therapy products from allospecific rejection. Further, expression of this molecule in virus-specific T-cells (VSTs) should virtually eliminate the potential for recipients to develop GVHD. METHODS: To generate a molecule that can mediate killing of cognate alloreactive T-cells, we fused beta-2 microglobulin (B2M), a universal component of all human leukocyte antigen (HLA) class I molecules, to the cytolytic endodomain of the T cell receptor ζ chain, to create a chimeric HLA accessory receptor (CHAR). To determine if CHAR-modified human VSTs could eliminate alloreactive T-cells, we co-cultured them with allogeneic peripheral blood mononuclear cells (PBMC), and assessed proliferation of PBMC-derived alloreactive T-cells and the survival of CHAR-modified VSTs by flow cytometry. RESULTS: The CHAR was able to transport HLA molecules to the cell surface of Daudi cells, that lack HLA class I expression due to defective B2M expression, illustrating its ability to complex with human HLA class I molecules. Furthermore, VSTs expressing CHAR were protected from allospecific elimination in co-cultures with allogeneic PBMCs compared to unmodified VSTs, and mediated killing of alloreactive T-cells. Unexpectedly, CHAR-modified VSTs eliminated not only alloreactive HLA class I restricted CD8 T-cells, but also alloreactive CD4 T-cells. This beneficial effect resulted from non-specific elimination of activated T-cells. Of note, we confirmed that CHAR-modified VSTs did not affect pathogen-specific T-cells which are essential for protective immunity. CONCLUSIONS: Human T-cells can be genetically modified to eliminate alloreactive T-cells, providing a unique strategy to protect off-the-shelf cell therapy products. Allogeneic cell therapies have already proved effective in treating viral infections in the stem cell transplant setting, and have potential in other fields such as regenerative medicine. A strategy to prevent allograft rejection would greatly increase their efficacy and commercial viability.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Rejeição de Enxerto/prevenção & controle , Doença Enxerto-Hospedeiro/prevenção & controle , Medicina Regenerativa/métodos , Linfócitos T/citologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Técnicas de Cocultura , Rejeição de Enxerto/imunologia , Doença Enxerto-Hospedeiro/imunologia , Antígenos HLA/imunologia , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Leucócitos Mononucleares/citologia , Ativação Linfocitária , Camundongos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/imunologia , Microglobulina beta-2/metabolismo
10.
Blood ; 130(3): 285-296, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28539325

RESUMO

Extending the success of chimeric antigen receptor (CAR) T cells to T-cell malignancies is problematic because most target antigens are shared between normal and malignant cells, leading to CAR T-cell fratricide. CD7 is a transmembrane protein highly expressed in acute T-cell leukemia (T-ALL) and in a subset of peripheral T-cell lymphomas. Normal expression of CD7 is largely confined to T cells and natural killer (NK) cells, reducing the risk of off-target-organ toxicity. Here, we show that the expression of a CD7-specific CAR impaired expansion of transduced T cells because of residual CD7 expression and the ensuing fratricide. We demonstrate that targeted genomic disruption of the CD7 gene prevented this fratricide and enabled expansion of CD7 CAR T cells without compromising their cytotoxic function. CD7 CAR T cells produced robust cytotoxicity against malignant T-cell lines and primary tumors and were protective in a mouse xenograft model of T-ALL. Although CD7 CAR T cells were also toxic against unedited (CD7+) T and NK lymphocytes, we show that the CD7-edited T cells themselves can respond to viral peptides and therefore could be protective against pathogens. Hence, genomic disruption of a target antigen overcomes fratricide of CAR T cells and establishes the feasibility of using CD7 CAR T cells for the targeted therapy of T-cell malignancies.


Assuntos
Antígenos CD7/imunologia , Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/transplante , Animais , Antígenos CD7/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/genética , Linfócitos T/citologia , Linfócitos T/imunologia , Transdução Genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA