RESUMO
We have cloned genes of Phytophthora infestans, the causal agent of potato late blight, that are activated shortly before the onset of invasion of the host tissue. The three genes isolated appear to be arranged in a genomic cluster and belong to a small polymorphic gene family. A conspicuous feature of the deduced proteins is an internal octapeptide repeat with the consensus sequence TTYAP TEE. Because of this structural motif, these novel P. infestans proteins were named Car (Cyst-germination-specific acidic repeat) proteins. One of the genes, car90, codes for 1,489 amino acids including 120 octapeptide tandem repeats. Car proteins are transiently expressed during germination of cysts and formation of appressoria and are localized at the surface of germlings. The structural motif of tandemly repeated oligopeptides also occurs in a prominent class of proteins, the mucins, from mammals. The P. infestans Car proteins share 51% sequence homology with the tandem repeat region of a subfamily of human mucins. According to the physiological functions ascribed to mucins, we suggest that Car proteins may serve as a mucous cover protecting the germling from desiccation, physical damage, and adverse effects of the plant defense response and may assist in adhesion to the leaf surface.
Assuntos
Proteínas Fúngicas/genética , Phytophthora/genética , Solanum tuberosum/microbiologia , Sequência de Aminoácidos , Northern Blotting , Western Blotting , Proteínas Fúngicas/metabolismo , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Mucinas/genética , Homologia de Sequência de AminoácidosRESUMO
Hterologous complementation of yeast mutants has enabled the isolation of genes encoding several families of amino acid transporters. Among them, NTR1 codes for a membrane protein with weak histidine transport activity. However, at the sequence level, NTR1 is related to rather non-specific oligopeptide transporters from a variety of species including Arabidopsis and to the Arabidopsis nitrate transporter CHL1. A yeast mutant deficient in oligopeptide transport was constructed allowing to show that NTR1 functions as a high affinity, low specificity peptide transporter. In siliques NTR1-expression is restricted to the embryo, implicating a role in the nourishment of the developing seed.