Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865273

RESUMO

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/química
2.
Proc Natl Acad Sci U S A ; 120(7): e2215308120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745793

RESUMO

Drug delivery systems (DDSs) that can overcome tumor heterogeneity and achieve deep tumor penetration are challenging to develop yet in high demand for cancer treatment. We report here a DDS based on self-assembling dendrimer nanomicelles for effective and deep tumor penetration via in situ tumor-secreted extracellular vesicles (EVs), an endogenous transport system that evolves with tumor microenvironment. Upon arrival at a tumor, these dendrimer nanomicelles had their payload repackaged by the cells into EVs, which were further transported and internalized by other cells for delivery "in relay." Using pancreatic and colorectal cancer-derived 2D, 3D, and xenograft models, we demonstrated that the in situ-generated EVs mediated intercellular delivery, propagating cargo from cell to cell and deep within the tumor. Our study provides a new perspective on exploiting the intrinsic features of tumors alongside dendrimer supramolecular chemistry to develop smart and effective DDSs to overcome tumor heterogeneity and their evolutive nature thereby improving cancer therapy.


Assuntos
Dendrímeros , Vesículas Extracelulares , Neoplasias , Humanos , Preparações Farmacêuticas/análise , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Orthop Traumatol Surg Res ; : 103965, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089421

RESUMO

CONTEXT: To assess the effect of a surgical procedure on a patient, it is conventional to use clinical scores before and after the procedure, but it is increasingly common and recommended to weight the results of these scores with the notion of minimal clinically important difference ("MCID"). This MCID should be determined using either the data distribution method based on score variation, or the anchor method, which uses an external question to categorize the results. MCIDs vary from one population to another, and to our knowledge there has been no investigation in France for total knee arthroplasties (TKAs). We therefore conducted a prospective study on a population of TKAs in order to: 1) Define MCID in France on a population of TKAs for the Oxford score, KOOS (Knee injury and Osteoarthritis Outcome Score) and its derivatives, 2) Determine whether MCID for these scores in France is comparable to results in the literature. HYPOTHESIS: Is the MCID for total knee arthroplasty in France comparable to other results in the literature? MATERIAL AND METHOD: This was a prospective observational study in which 218 patients (85 men, 133 women) with a mean age of 72 years [27-90] who had undergone a primary TKA out of 300 initially included responded, before and after surgery, to the Oxford-12, KOOS and Forgotten Joint Score (FJS) questions (mean follow-up 24 months). MCID was calculated using the distribution method as well as the anchor method ("improvement 1 to 5" and "improvement yes or no"). RESULTS: At a mean follow-up of 24 months [18-36], the Oxford-12 score increased from 16 ± 8 [0-41] to 34 ± 11 [6-48] (p < 0.001), all components of the KOOS score were improved and the FJS at follow-up was 47 ± 32 [0-100]. For the anchor "improvement 1 to 5", there were 14 unimproved patients, 23 patients in identical condition and 179 patients improved by surgery. For the anchor "are you improved yes/no", there were 8 unimproved patients, 22 in identical condition and 187 surgically-improved patients. The mean MCID for all methods (anchor method and distribution) was 10 [7-13] for Oxford-12, 12 [12-12] for KOOS Symptom, 14 [12-17] for KOOS Pain, 12 [11-14] for KOOS Function, 14 [12-16] for KOOS Sport, 15 [15-16] for KOOS Quality of Life (QOL), 11 [10-12] for KOOS 12, 15 [12-18] for KOOS 12 Pa in. 12 [12-13] for KOOS 12 Function, 15 [15-15] for KOOS 12 QOL, 14 [13-14] for KOOS Physical Function Short-form (PS) and 14 [13-16] for KOOS Joint Replacement (JR). DISCUSSION: The MCID for the Oxford-12, KOOS and its derivatives scores in a French population is comparable to that observed in other populations in the literature. LEVEL OF EVIDENCE: IV; prospective study without control group.

4.
ACS Mater Au ; 4(5): 489-499, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39280813

RESUMO

Multicore magnetic nanoparticles (MNPs), comprising iron oxide cores embedded in a sugar or starch matrix, are a class of nanomaterials with promising magnetic heating properties. Their internal structure, and particularly the strength of the internal core-core magnetic interactions, are believed to determine the functional properties, but there have been few detailed studies on this to date. We report here on an interlaboratory and multimodality transmission electron microscopy (TEM) and magnetic study of a high-performance MNP material (supplied by Resonant Circuits Limited, RCL) that is currently being used in a clinical study for the treatment of pancreatic cancer. TEM data were collected under a variety of conditions: conventional; high-resolution; scanning; cryogenic; and, for the first time, liquid phase. All the imaging modes showed mostly irregular dextran lamellae of lateral dimensions 30-90 nm, plus ca. 15% n/n of what appeared to be 30-60 nm long "nanorods", and a multitude of well-dispersed ca. 3.7 nm diameter iron oxide cores. Cryogenic electron tomography indicated that the nanorods were edge-on lamellae, but in dried samples, tomography showed rod- or lath-shaped forms, possibly resulting from the collapse of lamellae during drying. High-resolution TEM (HRTEM) showed the dextran to be crystallized in the low-temperature hydrated dextran polymorph. Magnetic remanence Henkel-plot analysis indicated a weak core-core interaction field of ca. 4.8 kA/m. Theoretical estimates using a point-dipole model associated this field with a core-to-core separation distance of ca. 5 nm, which tallies well with the ca. 4-6 nm range of separation distances observed in liquid-cell TEM data. On this basis, we identify the structure-function link in the RCL nanoparticles to be the unusually well-dispersed multicore structure that leads to their strong heating capability. This insight provides an important design characteristic for the future development of bespoke nanomaterials for this significant clinical application.

5.
Adv Mater ; 36(7): e2308262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030568

RESUMO

Bioimaging is a powerful tool for diagnosing tumors but remains limited in terms of sensitivity and specificity. Nanotechnology-based imaging probes able to accommodate abundant imaging units with different imaging modalities are particularly promising for overcoming these limitations. In addition, the nanosized imaging agents can specifically increase the contrast of tumors by exploiting the enhanced permeability and retention effect. A proof-of-concept study is performed on pancreatic cancer to demonstrate the use of modular amphiphilic dendrimer-based nanoprobes for magnetic resonance (MR) imaging (MRI) or MR/near-infrared fluorescence (NIRF) multimodality imaging. Specifically, the self-assembly of an amphiphilic dendrimer bearing multiple Gd3+ units at its terminals, generates a nanomicellar agent exhibiting favorable relaxivity for MRI with a good safety profile. MRI reveals an up to two-fold higher contrast enhancement in tumors than in normal muscle. Encapsulating the NIRF dye within the core of the nanoprobe yields an MR/NIRF bimodal imaging agent for tumor detection that is efficient both for MRI, at Gd3+ concentrations 1/10 the standard clinical dose, and for NIRF imaging, allowing over two-fold stronger fluorescence intensities. These self-assembling dendrimer nanosystems thus constitute effective probes for MRI and MR/NIRF multimodality imaging, offering a promising nanotechnology platform for elaborating multimodality imaging probes in biomedical applications.


Assuntos
Dendrímeros , Neoplasias Pancreáticas , Humanos , Meios de Contraste , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem
6.
Adv Sci (Weinh) ; 9(26): e2200562, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35712764

RESUMO

G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report  for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.


Assuntos
Angiotensina II , Neoplasias , Angiotensina II/metabolismo , Animais , Camundongos , Neoplasias/genética , Neoplasias/terapia , RNA/metabolismo , Receptores Acoplados a Proteínas G/genética , Sistema Renina-Angiotensina
7.
J Mater Chem B ; 8(30): 6438-6450, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32579661

RESUMO

Nanomedicines are considered as promising therapeutics for cancer treatment. However, clinical translation is still scarce, partly because their biological behavior is not well understood. Extracting general guidelines from the great variety of nanoparticles and conditions studied is indeed difficult, and relevant techniques are lacking to obtain in situ information. Here, both issues are solved by combining versatile model nanoparticles with in situ tools based on small-angle scattering techniques (SAS). The strategy was to develop a library of nanoparticles and perform systematic study of their interactions with biological systems. Considering the promising properties of gold nanoparticles as cancer therapeutics, polymethacrylate-grafted gold nanoparticles were chosen as models. Modulation of polymer chemistry was shown to change the surface properties while keeping the same structure for all nanoparticles. This unity allowed reliable comparison to extract general principles, while the synthesis versatility enabled to fine-tune the nanoparticles surface properties, especially through copolymerization, and thus to optimize their biological behavior. Two specific aspects were particularly examined: colloidal stability and cell uptake. Positive charges and hydrophobicity were identified as key parameters influencing toxicity and internalization. In situ SAS gave valuable information about nanoparticles evolution in biologically relevant environments. Good colloidal stability was thereby shown in cell culture media, while intracellular transformation and quantity of nanoparticles were monitored, highlighting the potential of these techniques for nanomedicines studies.


Assuntos
Antineoplásicos/química , Materiais Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Ácidos Polimetacrílicos/química , Bibliotecas de Moléculas Pequenas/química , Animais , Antineoplásicos/farmacologia , Permeabilidade da Membrana Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanomedicina , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Bibliotecas de Moléculas Pequenas/farmacologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA