Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 16(2): 655-668, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615464

RESUMO

Development of highly effective nonviral gene delivery vectors for transfection of diverse cell populations remains a challenge despite utilization of both rational and combinatorial driven approaches to nanoparticle engineering. In this work, multifunctional polyesters are synthesized with well-defined branching structures via A2 + B2/B3 + C1 Michael addition reactions from small molecule acrylate and amine monomers and then end-capped with amine-containing small molecules to assess the influence of polymer branching structure on transfection. These Branched poly(Ester Amine) Quadpolymers (BEAQs) are highly effective for delivery of plasmid DNA to retinal pigment epithelial cells and demonstrate multiple improvements over previously reported leading linear poly(beta-amino ester)s, particularly for volume-limited applications where improved efficiency is required. BEAQs with moderate degrees of branching are demonstrated to be optimal for delivery under high serum conditions and low nanoparticle doses further relevant for therapeutic gene delivery applications. Defined structural properties of each polymer in the series, including tertiary amine content, correlated with cellular transfection efficacy and viability. Trends that can be applied to the rational design of future generations of biodegradable polymers are elucidated.


Assuntos
Nanopartículas/química , Plasmídeos/genética , Polímeros/química , Linhagem Celular , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Plasmídeos/administração & dosagem , Poliésteres/química , Transfecção/métodos
2.
Mol Ther ; 25(7): 1697-1709, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28479046

RESUMO

There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Nanopartículas/química , Coloração e Rotulagem/métodos , Animais , Carbocianinas/química , Ácidos Carboxílicos/química , DNA/genética , DNA/metabolismo , Citometria de Fluxo/métodos , Fluoresceína/química , Expressão Gênica , Genes Reporter , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Tamanho da Partícula , Polietilenoimina/química , Polilisina/química , Análise de Célula Única/métodos
3.
Sci Rep ; 14(1): 714, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184676

RESUMO

Ultrasound technology can provide high-resolution imaging of blood flow following spinal cord injury (SCI). Blood flow imaging may improve critical care management of SCI, yet its duration is limited clinically by the amount of contrast agent injection required for high-resolution, continuous monitoring. In this study, we aim to establish non-contrast ultrasound as a clinically translatable imaging technique for spinal cord blood flow via comparison to contrast-based methods and by measuring the spatial distribution of blood flow after SCI. A rodent model of contusion SCI at the T12 spinal level was carried out using three different impact forces. We compared images of spinal cord blood flow taken using both non-contrast and contrast-enhanced ultrasound. Subsequently, we processed the images as a function of distance from injury, yielding the distribution of blood flow through space after SCI, and found the following. (1) Both non-contrast and contrast-enhanced imaging methods resulted in similar blood flow distributions (Spearman's ρ = 0.55, p < 0.0001). (2) We found an area of decreased flow at the injury epicenter, or umbra (p < 0.0001). Unexpectedly, we found increased flow at the periphery, or penumbra (rostral, p < 0.05; caudal, p < 0.01), following SCI. However, distal flow remained unchanged, in what is presumably unaffected tissue. (3) Finally, tracking blood flow in the injury zones over time revealed interesting dynamic changes. After an initial decrease, blood flow in the penumbra increased during the first 10 min after injury, while blood flow in the umbra and distal tissue remained constant over time. These results demonstrate the viability of non-contrast ultrasound as a clinical monitoring tool. Furthermore, our surprising observations of increased flow in the injury periphery pose interesting new questions about how the spinal cord vasculature reacts to SCI, with potentially increased significance of the penumbra.


Assuntos
Contusões , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/diagnóstico por imagem , Ultrassonografia , Processamento de Imagem Assistida por Computador
4.
Commun Med (Lond) ; 4(1): 4, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182729

RESUMO

BACKGROUND: Tension in the spinal cord is a trademark of tethered cord syndrome. Unfortunately, existing tests cannot quantify tension across the bulk of the cord, making the diagnostic evaluation of stretch ambiguous. A potential non-destructive metric for spinal cord tension is ultrasound-derived shear wave velocity (SWV). The velocity is sensitive to tissue elasticity and boundary conditions including strain. We use the term Ultrasound Tensography to describe the acoustic evaluation of tension with SWV. METHODS: Our solution Tethered cord Assessment with Ultrasound Tensography (TAUT) was utilized in three sub-studies: finite element simulations, a cadaveric benchtop validation, and a neurosurgical case series. The simulation computed SWV for given tensile forces. The cadaveric model with induced tension validated the SWV-tension relationship. Lastly, SWV was measured intraoperatively in patients diagnosed with tethered cords who underwent treatment (spinal column shortening). The surgery alleviates tension by decreasing the vertebral column length. RESULTS: Here we observe a strong linear relationship between tension and squared SWV across the preclinical sub-studies. Higher tension induces faster shear waves in the simulation (R2 = 0.984) and cadaveric (R2 = 0.951) models. The SWV decreases in all neurosurgical procedures (p < 0.001). Moreover, TAUT has a c-statistic of 0.962 (0.92-1.00), detecting all tethered cords. CONCLUSIONS: This study presents a physical, clinical metric of spinal cord tension. Strong agreement among computational, cadaveric, and clinical studies demonstrates the utility of ultrasound-induced SWV for quantitative intraoperative feedback. This technology is positioned to enhance tethered cord diagnosis, treatment, and postoperative monitoring as it differentiates stretched from healthy cords.


Tethered spinal cord syndrome occurs when surrounding tissue attaches to and causes stretching across the spinal cord. People with a tethered cord can experience weakness, pain, and loss of bladder control. Although increased tension in the spinal cord is known to cause these symptoms, evaluating the amount of stretching remains challenging. We investigated the ability of an ultrasound imaging approach to measure spinal cord tension. We studied our method in a computer simulation, a benchtop validation model, and in six people with tethered cords during surgery that they were undergoing to reduce tension. In each phase, the approach could detect differences between stretched spinal cords and spinal cords in a healthy state. Our method could potentially be used in the future to improve the care of people with a tethered cord.

5.
IEEE Trans Biomed Eng ; 70(10): 2980-2990, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192038

RESUMO

OBJECTIVE: Our study defines a novel electrode placement method called Functionally Adaptive Myosite Selection (FAMS), as a tool for rapid and effective electrode placement during prosthesis fitting. We demonstrate a method for determining electrode placement that is adaptable towards individual patient anatomy and desired functional outcomes, agnostic to the type of classification model used, and provides insight into expected classifier performance without training multiple models. METHODS: FAMS relies on a separability metric to rapidly predict classifier performance during prosthesis fitting. RESULTS: The results show a predictable relationship between the FAMS metric and classifier accuracy (3.45%SE), allowing estimation of control performance with any given set of electrodes. Electrode configurations selected using the FAMS metric show improved control performance ( ) for target electrode counts compared to established methods when using an ANN classifier, and equivalent performance ( R2 ≥ .96) to previous top-performing methods on an LDA classifier, with faster convergence ( ). We used the FAMS method to determine electrode placement for two amputee subjects by using the heuristic to search through possible sets, and checking for saturation in performance vs electrode count. The resulting configurations that averaged 95.8% of the highest possible classification performance using a mean 25 number of electrodes (19.5% of the available sites). SIGNIFICANCE: FAMS can be used to rapidly approximate the tradeoffs between increased electrode count and classifier performance, a useful tool during prosthesis fitting.


Assuntos
Membros Artificiais , Reconhecimento Automatizado de Padrão , Humanos , Eletromiografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Eletrodos , Extremidade Superior
6.
J Vis Exp ; (193)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971451

RESUMO

Low-intensity focused ultrasound (LIFU) uses ultrasonic pulsations at lower intensities than ultrasound and is being tested as a reversible and precise neuromodulatory technology. Although LIFU-mediated blood-brain barrier (BBB) opening has been explored in detail, no standardized technique for blood-spinal cord barrier (BSCB) opening has been established to date. Therefore, this protocol presents a method for successful BSCB disruption using LIFU sonication in a rat model, including descriptions of animal preparation, microbubble administration, target selection and localization, as well as BSCB disruption visualization and confirmation. The approach reported here is particularly useful for researchers who need a fast and cost-effective method to test and confirm target localization and precise BSCB disruption in a small animal model with a focused ultrasound transducer, evaluate the BSCB efficacy of sonication parameters, or explore applications for LIFU at the spinal cord, such as drug delivery, immunomodulation, and neuromodulation. Optimizing this protocol for individual use is recommended, especially for advancing future preclinical, clinical, and translational work.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Ratos , Animais , Medula Espinal/diagnóstico por imagem , Ultrassonografia , Barreira Hematoencefálica/diagnóstico por imagem , Modelos Animais
7.
Oper Neurosurg (Hagerstown) ; 25(6): 482-488, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578266

RESUMO

BACKGROUND AND OBJECTIVES: Robot-assisted pedicle screw placement is associated with greater accuracy, reduced radiation, less blood loss, shorter hospital stays, and fewer complications than freehand screw placement. However, it can be associated with longer operative times and an extended training period. We report the initial experience of a surgeon using a robot system at an academic medical center. METHODS: We retrospectively reviewed all patients undergoing robot-assisted pedicle screw placement at a single tertiary care institution by 1 surgeon from 10/2017 to 05/2022. Linear regression, analysis of variance, and cumulative sum analysis were used to evaluate operative time learning curves. Operative time subanalyses for surgery indication, number of levels, and experience level were performed. RESULTS: In total, 234 cases were analyzed. A significant 0.19-minute decrease in operative time per case was observed (r = 0.14, P = .03). After 234 operations, this translates to a reduction in 44.5 minutes from the first to last case. A linear relationship was observed between case number and operative time in patients with spondylolisthesis (-0.63 minutes/case, r = 0.41, P < .001), 2-level involvement (-0.35 minutes/case, r = 0.19, P = .05), and 4-or-more-level involvement (-1.29 minutes/case, r = 0.24, P = .05). This resulted in reductions in operative time ranging from 39 minutes to 1.5 hours. Continued reductions in operative time were observed across the learning, experienced, and expert phases, which had mean operative times of 214, 197, and 146 minutes, respectively ( P < .001). General proficiency in robot-assisted surgery was observed after the 20th case. However, 67 cases were required to reach mastery, defined as the inflection point of the cumulative sum curve. CONCLUSION: This study documents the long-term learning curve of a fellowship-trained spine neurosurgeon. Operative time significantly decreased with more experience. Although gaining comfort with robotic systems may be challenging or require additional training, it can benefit surgeons and patients alike with continued reductions in operative time.


Assuntos
Parafusos Pediculares , Robótica , Humanos , Curva de Aprendizado , Duração da Cirurgia , Estudos Retrospectivos
8.
IEEE Biomed Circuits Syst Conf ; 2022: 610-614, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36695674

RESUMO

Imaging of spinal cord microvasculature holds great potential in directing critical care management of spinal cord injury (SCI). Traditionally, contrast agents are preferred for imaging of the spinal cord vasculature, which is disadvantageous for long-term monitoring of injury. Here, we present FlowMorph, an algorithm that uses mathematical morphology techniques to segment non-contrast Doppler-based videos of rat spinal cord. Using the segmentation, it measures single-vessel parameters such as flow velocity, rate, and radius, with visible cardiac cycles in individual vessels showcasing the spatiotemporal resolution. The segmentation outlines vessels well with little extraneous labeling, and outlines are smooth through time. Radius measurements of perforating vessels are similar to what is seen in the literature through other methods. Verification of the algorithm through comparison to manual measurement and in vitro microphantom standards highlights points of future improvement. This method will be vital for future work studying the vascular effects of SCI and can be adopted to other species as well.

9.
Brain Sci ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671984

RESUMO

Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA.

10.
Neurotrauma Rep ; 3(1): 352-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204385

RESUMO

Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.

11.
J Clin Neurosci ; 104: 18-28, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35933785

RESUMO

Elastography is an imaging technology capable of measuring tissue stiffness and consistency. The technology has achieved widespread use in the workup and management of diseases of the liver, breast, thyroid, and prostate. Although elastography is increasingly being applied in neurosurgery, it has not yet achieved widespread adoption and many clinicians remain unfamiliar with the technology. Therefore, we sought to summarize the range of applications and elastography modalities available for neurosurgery, report its effectiveness in comparison with conventional imaging methods, and offer recommendations. All full-text English-language manuscripts on the use of elastography for neurosurgical procedures were screened using the PubMed/MEDLINE, Embase, Cochrane Library, Scopus, and Web of Science databases. Thirty-two studies were included with 990 patients, including 21 studies on intracranial tumors, 5 on hydrocephalus, 4 on epilepsy, 1 on spinal cord compression, and 1 on adolescent scoliosis. Twenty studies used ultrasound elastography (USE) whereas 12 used magnetic resonance elastography (MRE). MRE studies were mostly used in the preoperative setting for assessment of lesion stiffness, tumor-brain adherence, diagnostic workup, and operative planning. USE studies were performed intraoperatively to guide resection of lesions, determine residual microscopic abnormalities, assess the tumor-brain interface, and study mechanical properties of tumors. Elastography can assist with resection of brain tissue, detection of microscopic lesions, and workup of hydrocephalus, among other applications under investigation. Its sensitivity often exceeds that of conventional MRI and ultrasound for identifying abnormal tissue and lesion margins.


Assuntos
Técnicas de Imagem por Elasticidade , Hidrocefalia , Neurocirurgia , Adolescente , Técnicas de Imagem por Elasticidade/métodos , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Imageamento por Ressonância Magnética/métodos , Masculino , Procedimentos Neurocirúrgicos
12.
J Neurosurg ; 136(2): 379-388, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388730

RESUMO

OBJECTIVE: Immune checkpoint inhibitors such as anti-programmed cell death protein 1 (anti-PD-1) have shown promise for the treatment of cancers such as melanoma, but results for glioblastoma (GBM) have been disappointing thus far. It has been suggested that GBM has multiple mechanisms of immunosuppression, indicating a need for combinatorial treatment strategies. It is well understood that GBM increases glutamate in the tumor microenvironment (TME); however, the significance of this is not well understood. The authors posit that glutamate upregulation in the GBM TME is immunosuppressive. The authors utilized a novel glutamate modulator, BHV-4157, to determine synergy between glutamate modulation and the well-established anti-PD-1 immunotherapy for GBM. METHODS: C57BL/6J mice were intracranially implanted with luciferase-tagged GL261 glioma cells. Mice were randomly assigned to the control, anti-PD-1, BHV-4157, or combination anti-PD-1 plus BHV-4157 treatment arms, and median overall survival was assessed. In vivo microdialysis was performed at the tumor site with administration of BHV-4157. Intratumoral immune cell populations were characterized with immunofluorescence and flow cytometry. RESULTS: The BHV-4157 treatment arm demonstrated improved survival compared with the control arm (p < 0.0001). Microdialysis demonstrated that glutamate concentration in TME significantly decreased after BHV-4157 administration. Immunofluorescence and flow cytometry demonstrated increased CD4+ T cells and decreased Foxp3+ T cells in mice that received BHV-4157 treatment. No survival benefit was observed when CD4+ or CD8+ T cells were depleted in mice prior to BHV-4157 administration (p < 0.05). CONCLUSIONS: In this study, the authors showed synergy between anti-PD-1 immunotherapy and glutamate modulation. The authors provide a possible mechanism for this synergistic benefit by showing that BHV-4157 relies on CD4+ and CD8+ T cells. This study sheds light on the role of excess glutamate in GBM and provides a basis for further exploring combinatorial approaches for the treatment of this disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Ácido Glutâmico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
13.
Neurosurgery ; 88(4): 855-863, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33370819

RESUMO

BACKGROUND: Cerebral vasospasm is a major source of morbidity and mortality following aneurysm rupture and has limited treatment options. OBJECTIVE: To evaluate the role of programmed death-1 (PD-1) in cerebral vasospasm. METHODS: Endovascular internal carotid artery perforation (ICAp) was used to induce cerebral vasospasm in mice. To evaluate the therapeutic potential of targeting PD-1, programmed death ligand-1 (PD-L1) was administered 1 h after ICAp and vasospasm was measured histologically at the level of the ICA bifurcation bilaterally. PD-1 expressing immune cell populations were evaluated by flow cytometry. To correlate these findings to patients and evaluate the potential of PD-1 as a biomarker, monocytes were isolated from the peripheral blood and analyzed by flow cytometry in a cohort of patients with ruptured cerebral aneurysms. The daily frequency of PD-1+ monocytes in the peripheral blood was correlated to transcranial Doppler velocities as well as clinical and radiographic vasospasm. RESULTS: We found that PD-L1 administration prevented cerebral vasospasm by inhibiting ingress of activated Ly6c+ and CCR2+ monocytes into the brain. Human correlative studies confirmed the presence of PD-1+ monocytes in the peripheral blood of patients with ruptured aneurysms and the frequency of these cells corresponded with cerebral blood flow velocities and clinical vasospasm. CONCLUSION: Our results identify PD-1+ monocytes as mediators of cerebral vasospasm and support PD-1 agonism as a novel therapeutic strategy.


Assuntos
Monócitos/metabolismo , Receptor de Morte Celular Programada 1/administração & dosagem , Hemorragia Subaracnóidea/sangue , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoespasmo Intracraniano/sangue , Vasoespasmo Intracraniano/prevenção & controle , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Estudos de Coortes , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Hemorragia Subaracnóidea/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana/métodos , Vasoespasmo Intracraniano/diagnóstico por imagem
14.
Oncoimmunology ; 10(1): 1940673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290904

RESUMO

Introduction: Despite the advent of immunotherapy as a promising therapeutic, glioblastoma (GBM) remains resistant to using checkpoint blockade due to its highly immunosuppressive tumor milieu. Moreover, current anti-PD-1 treatment requires multiple infusions with adverse systemic effects. Therefore, we used a PCL:PEG:PCL polymer gel loaded with anti-PD-1 and implanted at the site of lymph nodes in an attempt to maximize targeting of inactivated T cells as well as mitigate unnecessary systemic exposure. Methods: Mice orthotopically implanted with GL261 glioma cells were injected with hydrogels loaded with anti-PD-1 in one of the following locations: cervical lymph nodes, inguinal lymph nodes, and the tumor site. Mice treated systemically with anti-PD-1 were used as comparative controls. Kaplan-Meier curves were generated for all arms, with ex vivo flow cytometric staining for L/D, CD45, CD3, CD4, CD8, TNF-α and IFN-y and co-culture ELISpots were done for immune cell activation assays. Results: Mice implanted with PCL:PEG:PCL hydrogels carrying anti-PD-1 at the site of their lymph nodes showed significantly improved survival outcomes compared to mice systemically treated with anti-PD-1 (P = .0185). Flow cytometric analysis of brain tissue and co-culture of lymph node T cells from mice implanted with gels demonstrated increased levels of IFN-y and TNF-α compared to mice treated with systemic anti-PD-1, indicating greater reversal of immunosuppression compared to systemic treatment. Conclusions: Our data demonstrate proof of principle for using localized therapy that targets lymph nodes for GBM. We propose an alternative treatment paradigm for developing new sustained local treatments with immunotherapy that are able to eliminate the need for multiple systemic infusions and their off-target effects.


Assuntos
Glioblastoma , Glioma , Animais , Glioblastoma/tratamento farmacológico , Terapia de Imunossupressão , Imunoterapia , Linfonodos , Camundongos
15.
Oncoimmunology ; 10(1): 1956142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484870

RESUMO

Clinical trials involving anti-programmed cell death protein-1 (anti-PD-1) failed to demonstrate improved overall survival in glioblastoma (GBM) patients. This may be due to the expression of alternative checkpoints such as B- and T- lymphocyte attenuator (BTLA) on several immune cell types including regulatory T cells. Murine GBM models indicate that there is significant upregulation of BTLA in the tumor microenvironment (TME) with associated T cell exhaustion. We investigate the use of antibodies against BTLA and PD-1 on reversing immunosuppression and increasing long-term survival in a murine GBM model. C57BL/6 J mice were implanted with the murine glioma cell line GL261 and randomized into 4 arms: (i) control, (ii) anti-PD-1, (iii) anti-BTLA, and (iv) anti-PD-1 + anti-BTLA. Kaplan-Meier curves were generated for all arms. Flow cytometric analysis of blood and brains were done on days 11 and 16 post-tumor implantation. Tumor-bearing mice treated with a combination of anti-PD-1 and anti-BTLA therapy experienced improved overall long-term survival (60%) compared to anti-PD-1 (20%) or anti-BTLA (0%) alone (P = .003). Compared to monotherapy with anti-PD-1, mice treated with combination therapy also demonstrated increased expression of CD4+ IFN-γ (P < .0001) and CD8+ IFN-γ (P = .0365), as well as decreased levels of CD4+ FoxP3+ regulatory T cells on day 16 in the brain (P = .0136). This is the first preclinical investigation into the effects of combination checkpoint blockade with anti-PD-1 and anti-BTLA treatment in GBM. We also show a direct effect on activated immune cell populations such as CD4+ and CD8 + T cells and immunosuppressive regulatory T cells through this combination therapy.


Assuntos
Glioblastoma , Glioma , Animais , Terapia Combinada , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
16.
ACS Biomater Sci Eng ; 6(6): 3411-3421, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463158

RESUMO

The mechanism by which cationic polymers containing titratable amines mediate effective endosomal escape and cytosolic delivery of nucleic acids is not well understood despite the decades of research devoted to these materials. Here, we utilize multiple assays investigating the endosomal escape step associated with plasmid delivery by polyethylenimine (PEI) and poly(ß-amino esters) (PBAEs) to improve the understanding of how these cationic polymers enable gene delivery. To probe the role of these materials in facilitating endosomal escape, we utilized vesicle membrane leakage and extracellular pH modulation assays to demonstrate the influence of polymer buffering capacity and effective pKa on the delivery of the plasmid DNA. Our results demonstrate that transfection with PBAEs is highly sensitive to the effective pKa of the overall polymer, which has broad implications for transfection. In more acidic environments, PBAE-mediated transfection was inhibited, while PEI was relatively unaffected. In neutral to basic environments, PBAEs have high buffering capacities that led to dramatically improved transfection efficacy. The cellular uptake of polymeric nanoparticles overall was unchanged as a function of pH, indicating that microenvironmental acidity was important for downstream intracellular delivery efficiency. Overall, this study motivates the use of polymer chemical characteristics, such as effective pKa values, to more efficiently evaluate new polymeric materials for enhanced intracellular delivery characteristics.


Assuntos
Ésteres , Nanopartículas , DNA , Polímeros
17.
Neurooncol Adv ; 2(1): vdaa011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642679

RESUMO

BACKGROUND: The tumor-selective human adenovirus Delta24-RGD is currently under investigation in phase II clinical trials for patients with recurrent glioblastoma (GBM). To improve treatments for patients with GBM, we explored the potential of combining Delta24-RGD with antibodies targeting immune checkpoints. METHODS: C57BL/6 mice were intracranially injected with GL261 cells and treated with a low dose of Delta24-RGD virus. The expression dynamics of 10 co-signaling molecules known to affect immune activity was assessed in tumor-infiltrating immune cells by flow cytometry after viral injection. The antitumor activity was measured by tumor cell killing and IFNγ production in co-cultures. Efficacy of the combination viro-immunotherapy was tested in vitro and in the GL261 and CT2A orthotopic mouse GBM models. Patient-derived GBM cell cultures were treated with Delta24-RGD to assess changes in PD-L1 expression induced by virus infection. RESULTS: Delta24-RGD therapy increased intratumoral CD8+ T cells expressing Inducible T-cell co-stimulator (ICOS) and PD-1. Functionality assays confirmed a significant positive correlation between tumor cell lysis and IFNγ production in ex vivo cultures (Spearman r = 0.9524; P < .01). Co-cultures significantly increased IFNγ production upon treatment with PD-1 blocking antibodies. In vivo, combination therapy with low-dose Delta24-RGD and anti-PD-1 antibodies significantly improved outcome compared to single-agent therapy in both syngeneic mouse glioma models and increased PD-1+ tumor-infiltrating CD8+ T cells. Delta24-RGD infection induced tumor-specific changes in PD-L1 expression in primary GBM cell cultures. CONCLUSIONS: This study demonstrates the potential of using low-dose Delta24-RGD therapy to sensitize glioma for combination with anti-PD-1 antibody therapy.

18.
Front Immunol ; 10: 1715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396227

RESUMO

Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Glioma/imunologia , Glioma/terapia , Imunoterapia/métodos , Células Mieloides , Animais , Terapia Combinada , Humanos , Células Mieloides/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia
19.
PLoS One ; 13(9): e0203717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192874

RESUMO

BACKGROUND: Most electronic-cigarette liquids contain propylene glycol, glycerin, nicotine and a wide variety of flavors of which many are sweet. Sweet flavors are classified as saccharides, esters, acids or aldehydes. This study investigates changes in cariogenic potential when tooth surfaces are exposed to e-cigarette aerosols generated from well-characterized reference e-liquids with sweet flavors. METHODS: Reference e-liquids were prepared by combining 20/80 propylene glycol/glycerin (by volume fraction), 10 mg/mL nicotine, and flavors. Aerosols were generated by a Universal Electronic-Cigarette Testing Device (49.2 W, 0.2 Ω). Streptococcus mutans (UA159) were exposed to aerosols on tooth enamel and the biological and physiochemical parameters were measured. RESULTS: E-cigarette aerosols produced four-fold increase in microbial adhesion to enamel. Exposure to flavored aerosols led to two-fold increase in biofilm formation and up to a 27% decrease in enamel hardness compared to unflavored controls. Esters (ethyl butyrate, hexyl acetate, and triacetin) in e-liquids were associated with consistent bacteria-initiated enamel demineralization, whereas sugar alcohol (ethyl maltol) inhibited S. mutans growth and adhesion. The viscosity of the e-liquid allowed S. mutans to adhere to pits and fissures. Aerosols contained five metals (mean ± standard deviation): calcium (0.409 ± 0.002) mg/L, copper (0.011 ± 0.001) mg/L, iron (0.0051 ± 0.0003) mg/L, magnesium (0.017 ± 0.002) mg/L, and silicon (0.166 ± 0.005) mg/L. CONCLUSIONS: This study systematically evaluated e-cigarette aerosols and found that the aerosols have similar physio-chemical properties as high-sucrose, gelatinous candies and acidic drinks. Our data suggest that the combination of the viscosity of e-liquids and some classes of chemicals in sweet flavors may increase the risk of cariogenic potential. Clinical investigation is warranted to confirm the data shown here.


Assuntos
Cárie Dentária/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/microbiologia , Humanos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Propriedades de Superfície
20.
J Biomed Mater Res A ; 105(6): 1813-1825, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28177587

RESUMO

Translation of biomaterial-based nanoparticle formulations to the clinic faces significant challenges including efficacy, safety, consistency and scale-up of manufacturing, and stability during long-term storage. Continuous microfluidic fabrication of polymeric nanoparticles has the potential to alleviate the challenges associated with manufacture, while offering a scalable solution for clinical level production. Poly(beta-amino esters) (PBAE)s are a class of biodegradable cationic polymers that self-assemble with anionic plasmid DNA to form polyplex nanoparticles that have been shown to be effective for transfecting cancer cells specifically in vitro and in vivo. Here, we demonstrate the use of a microfluidic device for the continuous and scalable production of PBAE/DNA nanoparticles followed by lyophilization and long term storage that results in improved in vitro efficacy in multiple cancer cell lines compared to nanoparticles produced by bulk mixing as well as in comparison to widely used commercially available transfection reagents polyethylenimine and Lipofectamine® 2000. We further characterized the nanoparticles using nanoparticle tracking analysis (NTA) to show that microfluidic mixing resulted in fewer DNA-free polymeric nanoparticles compared to those produced by bulk mixing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1813-1825, 2017.


Assuntos
DNA/administração & dosagem , Nanopartículas/química , Plasmídeos/administração & dosagem , Polímeros/química , Transfecção/métodos , Linhagem Celular Tumoral , DNA/genética , Desenho de Equipamento , Liofilização , Técnicas de Transferência de Genes , Humanos , Dispositivos Lab-On-A-Chip , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA