Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(32): 5870-5879, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491315

RESUMO

Amyloid ß protein (Aß) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aß aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aß and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aß and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aß to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aß-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid ß protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Masculino , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Potenciação de Longa Duração , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo
2.
Eur J Neurosci ; 58(6): 3402-3411, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37655756

RESUMO

Non-invasive sensory stimulation in the range of the brain's gamma rhythm (30-100 Hz) is emerging as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). Here, we investigated the effect of repeated combined exposure to 40 Hz synchronized sound and light stimuli on hippocampal long-term potentiation (LTP) in vivo in three rat models of early AD. We employed a very complete model of AD amyloidosis, amyloid precursor protein (APP)-overexpressing transgenic McGill-R-Thy1-APP rats at an early pre-plaque stage, systemic treatment of transgenic APP rats with corticosterone modelling certain environmental AD risk factors and, importantly, intracerebral injection of highly disease-relevant AD patient-derived synaptotoxic beta-amyloid and tau in wild-type animals. We found that daily treatment with 40 Hz sensory stimulation for 2 weeks fully abrogated the inhibition of LTP in all three models. Moreover, there was a negative correlation between the magnitude of LTP and the level of active caspase-1 in the hippocampus of transgenic APP animals, which suggests that the beneficial effect of 40 Hz stimulation was dependent on modulation of pro-inflammatory mechanisms. Our findings support ongoing clinical trials of gamma-patterned sensory stimulation in early AD.


Assuntos
Doença de Alzheimer , Animais , Ratos , Doença de Alzheimer/terapia , Plasticidade Neuronal , Potenciação de Longa Duração , Ratos Transgênicos , Precursor de Proteína beta-Amiloide/genética
3.
J Neurochem ; 157(6): 2128-2144, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33583024

RESUMO

Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aß) deposition. We established two-photon Ca2+ -imaging in vivo in the hippocampus of rats and found hyperactivity of CA1 neurons. Patch-clamp recordings in brain slices in vitro revealed increased neuronal input resistance and prolonged action potential width in CA1 pyramidal neurons. We did neither observe changes in synaptic inhibition, nor in excitation. Our data support the view that increased intrinsic excitability of CA1 neurons may precede inhibitory dysfunction at an early stage of Aß-deposition and disease progression.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Hipocampo/patologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Transgênicos
4.
J Neurosci ; 38(50): 10595-10606, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355631

RESUMO

Intracellular neurofibrillary tangles (NFTs) composed of tau protein are a neuropathological hallmark of several neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). For some time NFTs were considered the primary cause of synaptic dysfunction and neuronal death, however, more recent evidence suggests that soluble aggregates of tau are key drivers of disease. Here we investigated the effect of different tau species on synaptic plasticity in the male rat hippocampus in vivo Intracerebroventricular injection of soluble aggregates formed from either wild-type or P301S human recombinant tau potently inhibited hippocampal long-term potentiation (LTP) at CA3-to-CA1 synapses. In contrast, tau monomers and fibrils appeared inactive. Neither baseline synaptic transmission, paired-pulse facilitation nor burst response during high-frequency conditioning stimulation was affected by the soluble tau aggregates. Similarly, certain AD brain soluble extracts inhibited LTP in a tau-dependent manner that was abrogated by either immunodepletion with, or coinjection of, a mid-region anti-tau monoclonal antibody (mAb), Tau5. Importantly, this tau-mediated block of LTP was prevented by administration of mAbs selective for the prion protein (PrP). Specifically, mAbs to both the mid-region (6D11) and N-terminus (MI-0131) of PrP prevented inhibition of LTP by both recombinant and brain-derived tau. These findings indicate that PrP is a mediator of tau-induced synaptic dysfunction.SIGNIFICANCE STATEMENT Here we report that certain soluble forms of tau selectively disrupt synaptic plasticity in the live rat hippocampus. Further, we show that monoclonal antibodies to cellular prion protein abrogate the impairment of long-term potentiation caused both by recombinant and Alzheimer's disease brain-derived soluble tau. These findings support a critical role for cellular prion protein in the deleterious synaptic actions of extracellular soluble tau in tauopathies, including Alzheimer's disease. Thus, approaches targeting cellular prion protein, or downstream pathways, might provide an effective strategy for developing therapeutics.


Assuntos
Hipocampo/metabolismo , Hipocampo/patologia , Plasticidade Neuronal/fisiologia , Proteínas PrPC/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Inibidores da Angiogênese/farmacologia , Animais , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Priônicas/metabolismo , Ratos
5.
Neurobiol Dis ; 127: 582-590, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30910746

RESUMO

Soluble synaptotoxic aggregates of the main pathological proteins of Alzheimer's disease, amyloid ß-protein (Aß) and tau, have rapid and potent inhibitory effects on long-term potentiation (LTP). Although the promotion of synaptic weakening mechanisms, including long-term depression (LTD), is posited to mediate LTP inhibition by Aß, little is known regarding the action of exogenous tau on LTD. The present study examined the ability of different assemblies of full-length human tau to affect LTD in the dorsal hippocampus of the anaesthetized rat. Unlike Aß, intracerebroventricular injection of soluble aggregates of tau (SτAs), but not monomers or fibrils, potently increased the threshold for LTD induction in a manner that required cellular prion protein. However, MTEP, an antagonist of the putative prion protein coreceptor metabotropic glutamate receptor 5, did not prevent the disruption of synaptic plasticity by SτAs. In contrast, systemic treatment with Ro 25-6981, a selective antagonist at GluN2B subunit-containing NMDA receptors, reduced SτA-mediated inhibition of LTD, but not LTP. Intriguingly, SτAs completely blocked Aß-facilitated LTD, whereas a subthreshold dose of SτAs facilitated Aß-mediated inhibition of LTP. Overall, these findings support the importance of cellular prion protein in mediating a range of, sometimes opposing, actions of soluble Aß and tau aggregates with different effector mechanisms on synaptic plasticity.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Agregados Proteicos/fisiologia , Proteínas tau/metabolismo , Animais , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Piridinas/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tiazóis/farmacologia
6.
Neurobiol Dis ; 114: 24-30, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29477641

RESUMO

Pro-inflammatory mechanisms have recently emerged as an important component of early Alzheimer's disease (AD) pathogenesis. A particularly attractive therapeutic strategy is to selectively prevent the disruptive effects of activation of the innate immune system in the brain at an early transitional stage by reducing the production or directly neutralizing pro-inflammatory cytokines, in particular IL-1ß and TNF-α. Here we tested their in vivo effects on synaptic plasticity deficits, which provide sensitive and robust measures of synaptic failure, in a rat model of AD amyloidosis. Using electrophysiological techniques we longitudinally studied the effects of the NLRP3 inflammasome inhibitor Mcc950, the IL-1 receptor antagonist (anakinra) and an anti-TNF-α agent (etanercept) in awake freely moving transgenic rats overexpressing AD associated ß-amyloid precursor protein at a pre-plaque stage of amyloidosis. Repeated treatment with Mcc950 reversibly abrogated the inhibition of long-term potentiation. The IL-1 receptor antagonist and etanercept also had a similar beneficial effect on the deficit in synaptic plasticity. Our findings support the clinical development of Mcc950 and clinically available IL-1- and TNF-α-neutralizing agents in early AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Amiloidose/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Plasticidade Neuronal/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Amiloidose/tratamento farmacológico , Amiloidose/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Transgênicos
7.
Cereb Cortex ; 27(7): 3724-3735, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27390019

RESUMO

Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid ß (Aß)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems. One such blood-based system, glutamate oxaloacetate transaminase (GOT), is activated by oxaloacetate, which acts as a co-substrate. We report here that synthetic and AD brain-derived Aß-mediated inhibition of synaptic long-term potentiation in the hippocampus is alleviated by oxaloacetate. Moreover the effect of oxaloacetate was GOT-dependent. The disruptive effects of a general inhibitor of excitatory amino acid transport or TNFα, a pro-inflammatory mediator of Aß action, were also reversed by oxaloacetate. Furthermore, another intervention that increases peripheral glutamate clearance, peritoneal dialysis, mimicked the beneficial effect of oxaloacetate. These findings lend support to the promotion of the peripheral clearance of glutamate as a means to alleviate synaptic dysfunction that is caused by impaired glutamate homeostasis in the brain.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/sangue , Hipocampo/metabolismo , Homeostase/fisiologia , Sinapses/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Aspartato Aminotransferase Citoplasmática/farmacologia , Ácido Aspártico/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Masculino , Ácido Oxaloacético/farmacologia , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar , Sinapses/fisiologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
8.
J Neurosci ; 35(16): 6265-76, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904780

RESUMO

Alzheimer's disease (AD) and familial Danish dementia (FDD) are degenerative neurological diseases characterized by amyloid pathology. Normal human sera contain IgG antibodies that specifically bind diverse preamyloid and amyloid proteins and have shown therapeutic potential in vitro and in vivo. We cloned one of these antibodies, 3H3, from memory B cells of a healthy individual using a hybridoma method. 3H3 is an affinity-matured IgG that binds a pan-amyloid epitope, recognizing both Aß and λ Ig light chain (LC) amyloids, which are associated with AD and primary amyloidosis, respectively. The pan-amyloid-binding properties of 3H3 were demonstrated using ELISA, immunohistochemical studies, and competition binding assays. Functional studies showed that 3H3 inhibits both Aß and LC amyloid formation in vitro and abrogates disruption of hippocampal synaptic plasticity by AD-patient-derived soluble Aß in vivo. A 3H3 single-chain variable fragment (scFv) retained the binding specificity of the 3H3 IgG and, when expressed in the brains of transgenic mice using an adeno-associated virus (AAV) vector, decreased parenchymal Aß amyloid deposition in TgCRND8 mice and ADan (Danish Amyloid) cerebral amyloid angiopathy in the mouse model of FDD. These data indicate that naturally occurring human IgGs can recognize a conformational, amyloid-specific epitope and have potent anti-amyloid activities, providing a rationale to test their potential as antibody therapeutics for diverse neurological and other amyloid diseases.


Assuntos
Peptídeos beta-Amiloides/imunologia , Amiloide/metabolismo , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Amiloide/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Encéfalo/metabolismo , Catarata/imunologia , Ataxia Cerebelar/imunologia , Angiopatia Amiloide Cerebral/imunologia , Surdez/imunologia , Demência/imunologia , Humanos , Imunoglobulina G/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Ratos
9.
J Biol Chem ; 290(47): 28343-28352, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26221033

RESUMO

Despite significant advances, the molecular identity of the cytotoxic species populated during in vivo amyloid formation crucial for the understanding of neurodegenerative disorders is yet to be revealed. In this study lysozyme prefibrillar oligomers and fibrils in both mature and sonicated states have been isolated through an optimized ultrafiltration/ultracentrifugation method and characterized with various optical spectroscopic techniques, atomic force microscopy, and transmission electron microscopy. We examined their level and mode of toxicity on rat pheochromocytoma (PC12) cells in both differentiated and undifferentiated states. We find that oligomers and fibrils display cytotoxic capabilities toward cultured cells in vitro, with oligomers producing elevated levels of cellular injury toward undifferentiated PC12 cells (PC12(undiff)). Furthermore, dual flow cytometry staining experiments demonstrate that the oligomers and mature fibrils induce divergent cellular death pathways (apoptosis and secondary necrosis, respectively) in these PC12 cells. We have also shown that oligomers but not sonicated mature fibrils inhibit hippocampal long term potentiation, a form of synaptic plasticity implicated in learning and memory, in vivo. We conclude that our in vitro and in vivo findings confer a level of resistance toward amyloid fibrils, and that the PC 12-based comparative cytotoxicity assay can provide insights into toxicity differences between differently aggregated protein species.


Assuntos
Amiloide/metabolismo , Biopolímeros/metabolismo , Morte Celular , Amiloide/química , Animais , Biopolímeros/química , Células PC12 , Ratos
10.
Hippocampus ; 26(12): 1655-1665, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27701797

RESUMO

Aggregated amyloid ß-protein (Aß) is pathognomonic of Alzheimer's disease and certain assemblies of Aß are synaptotoxic. Excess glutamate or diminished glutathione reserve are both implicated in mediating or modulating Aß-induced disruption of synaptic plasticity. The system xc- antiporter promotes Na+ -independent exchange of cystine with glutamate thereby providing a major source of extracellular glutamate and intracellular glutathione concentrations. Here we probed the ability of two drugs with opposite effects on system xc-, the inhibitor sulfasalazine and facilitator N-acetylcysteine, to modulate the ability of Aß1-42 to inhibit long-term potentiation (LTP) in the CA1 area of the anaesthetized rat. Whereas acute systemic treatment with sulfasalazine lowered the threshold for Aß to interfere with synaptic plasticity, N-acetylcysteine prevented the inhibition of LTP by Aß alone or in combination with sulfasalazine. Moreover acute N-acetylcysteine also prevented the inhibition of LTP by TNFα, a putative mediator of Aß actions, and repeated systemic N-acetylcysteine treatment for 7 days reversed the delayed deleterious effect of Aß on LTP. Since both of these drugs are widely used clinically, further evaluation of their potential beneficial and deleterious actions in early Alzheimer's disease seems warranted. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetilcisteína/farmacologia , Peptídeos beta-Amiloides/toxicidade , Fármacos do Sistema Nervoso Central/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Sulfassalazina/farmacologia , Sistemas de Transporte de Aminoácidos Acídicos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Cateteres de Demora , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glutationa/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Maleatos/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
11.
J Neurosci ; 34(18): 6140-5, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790184

RESUMO

Alzheimer's disease (AD) is associated with pathological assembly states of amyloid-ß protein (Aß). Aß-related synaptotoxicity can be blocked by anti-prion protein (PrP) antibodies, potentially allowing therapeutic targeting of this aspect of AD neuropathogenesis. Here, we show that intravascular administration of a high-affinity humanized anti-PrP antibody to rats can prevent the plasticity-disrupting effects induced by exposure to soluble AD brain extract. These results provide an in vivo proof of principle for such a therapeutic strategy.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Anticorpos Monoclonais/administração & dosagem , Região CA1 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Príons/imunologia , Idoso de 80 Anos ou mais , Análise de Variância , Animais , Biofísica , Vias de Administração de Medicamentos , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Príons/metabolismo , Ratos , Ratos Wistar , Lobo Temporal/química , Lobo Temporal/metabolismo
12.
Biochem J ; 461(3): 413-26, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24785004

RESUMO

Dimers of Aß (amyloid ß-protein) are believed to play an important role in Alzheimer's disease. In the absence of sufficient brain-derived dimers, we studied one of the only possible dimers that could be produced in vivo, [Aß](DiY) (dityrosine cross-linked Aß). For comparison, we used the Aß monomer and a design dimer cross-linked by replacement of Ser²6 with cystine [AßS26C]2. We showed that similar to monomers, unaggregated dimers lack appreciable structure and fail to alter long-term potentiation. Importantly, dimers exhibit subtly different structural propensities from monomers and each other, and can self-associate to form larger assemblies. Although [Aß](DiY) and [AßS26C]2 have distinct aggregation pathways, they both populate bioactive soluble assemblies for longer durations than Aß monomers. Our results indicate that the link between Aß dimers and Alzheimer's disease results from the ability of dimers to further assemble and form synaptotoxic assemblies that persist for long periods of time.


Assuntos
Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/toxicidade , Cerebelo/efeitos dos fármacos , Proteínas do Tecido Nervoso/toxicidade , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Sinapses/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Substituição de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Cerebelo/metabolismo , Dimerização , Potenciais Evocados/efeitos dos fármacos , Humanos , Injeções Intraventriculares , Cinética , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Solubilidade , Sinapses/metabolismo
13.
Biochemistry ; 53(24): 3908-21, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24840308

RESUMO

Evidence for a central role of amyloid ß-protein (Aß) in the genesis of Alzheimer's disease (AD) has led to advanced human trials of Aß-lowering agents. The "amyloid hypothesis" of AD postulates deleterious effects of small, soluble forms of Aß on synaptic form and function. Because selectively targeting synaptotoxic forms of soluble Aß could be therapeutically advantageous, it is important to understand the full range of soluble Aß derivatives. We previously described a Chinese hamster ovary (CHO) cell line (7PA2 cells) that stably expresses mutant human amyloid precursor protein (APP). Here, we extend this work by purifying an sodium dodecyl sulfate (SDS)-stable, ∼8 kDa Aß species from the 7PA2 medium. Mass spectrometry confirmed its identity as a noncovalently bonded Aß40 homodimer that impaired hippocampal long-term potentiation (LTP) in vivo. We further report the detection of Aß-containing fragments of APP in the 7PA2 medium that extend N-terminal from Asp1 of Aß. These N-terminally extended Aß-containing monomeric fragments are distinct from soluble Aß oligomers formed from Aß1-40/42 monomers and are bioactive synaptotoxins secreted by 7PA2 cells. Importantly, decreasing ß-secretase processing of APP elevated these alternative synaptotoxic APP fragments. We conclude that certain synaptotoxic Aß-containing species can arise from APP processing events N-terminal to the classical ß-secretase cleavage site.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Plasticidade Neuronal , Sinapses/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/isolamento & purificação , Peptídeos beta-Amiloides/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Meios de Cultivo Condicionados , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Fragmentos de Peptídeos , Ratos
14.
Cereb Cortex ; 23(4): 932-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22490551

RESUMO

Both electrically induced synaptic long-term potentiation (LTP) and long-term depression have been extensively studied as models of the cellular basis of learning and memory mechanisms. Recently, considerable interest has been generated by the possibility that the activity-dependent persistent reversal of previously established synaptic LTP (depotentiation) may play a role in the time- and state-dependent erasure of memory. Here, we examined the requirement for glutamate receptor activation in experience-induced reversal of previously established LTP in the CA1 area of the hippocampus of freely behaving rats. Continuous exploration of non-aversive novelty for ~30 min, which was associated with hippocampal activation as measured by increased theta power in the electroencephalogram, triggered a rapid and persistent reversal of high frequency stimulation-induced LTP both at apical and basal synapses. Blockade of metabotropic glutamate (mGlu) receptors with mGlu5 subtype-selective antagonists, or N-methyl-D-aspartate (NMDA) receptors with GluN2B subunit-selective antagonists, prevented novelty-induced depotentiation. These findings strongly indicate that activation of both mGlu5 receptors and GluN2B-containing NMDA receptors is required for experience-triggered induction of depotentiation at CA3-CA1 synapses. The mechanistic concordance of the present and previous studies of experience-induced and electrically induced synaptic depotentiation helps to integrate our understanding of the neurophysiological underpinnings of learning and memory.


Assuntos
Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Análise de Variância , Animais , Biofísica , Estimulação Elétrica , Eletroencefalografia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Vigília
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230234, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853565

RESUMO

How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts. We also explored the persistence of the inhibition of LTP by different synaptotoxic tau preparations. A single intracerebral injection of aggregates of recombinant human tau that had been prepared by either sonication of fibrils (SτAs) or disulfide bond formation (oTau) rapidly and persistently inhibited LTP in rat hippocampus. The threshold for the acute inhibitory effect of oTau was lowered in amyloid precursor protein (APP)-transgenic rats. A single injection of synaptotoxic tau-containing AD or Pick's disease brain extracts also inhibited LTP, for over two weeks. Remarkably, the persistent disruption of synaptic plasticity by patient-derived brain tau was rapidly reversed by a single intracerebral injection of different anti-tau monoclonal antibodies, including one directed to a specific human tau amino acid sequence. We conclude that patient-derived LTP-disrupting tau species persist in the brain for weeks, maintaining their neuroactivity often in concert with Aß. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Potenciação de Longa Duração , Proteínas tau , Potenciação de Longa Duração/efeitos dos fármacos , Animais , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ratos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Ratos Transgênicos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos
16.
Neural Regen Res ; 18(6): 1213-1219, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36453396

RESUMO

Cognitive decline in Alzheimer's disease correlates with the extent of tau pathology, in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus. Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-ß or long-term depression, a form of synaptic weakening involved in learning and memory, share similar mechanisms. Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging. Conversely, certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau, in particular, phosphorylation at residue Ser396. Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau (hyper)phosphorylation. We first summarize experimental evidence regarding tau-long-term depression interactions, followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer's disease. Finally, we conclude with some thoughts and perspectives on future research about these interactions.

17.
J Neurosci ; 31(11): 3953-61, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21411638

RESUMO

There is accumulating evidence that sleep contributes to memory formation and learning, but the underlying cellular mechanisms are incompletely understood. To investigate the impact of sleep on excitatory synaptic transmission, we obtained whole-cell patch-clamp recordings from layer V pyramidal neurons in acute slices of somatosensory cortex of juvenile rats (postnatal days 21-25). In animals after the dark period, philanthotoxin 74 (PhTx)-sensitive calcium-permeable AMPA receptors (CP-AMPARs) accounted for ∼25% of total EPSP size, and current-voltage (I-V) relationships of the underlying EPSCs showed inward rectification. In contrast, in similar experiments after the light period, EPSPs were PhTx insensitive with linear I-V characteristics, indicating that CP-AMPARs were less abundant. Combined EEG and EMG recordings confirmed that slow-wave sleep-associated delta wave power peaked at the onset of the more quiescent, lights-on phase of the cycle. Subsequently, we show that burst firing, a characteristic action potential discharge mode of layer V pyramidal neurons during slow-wave sleep has a dual impact on synaptic AMPA receptor composition: repetitive burst firing without synaptic stimulation eliminated CP-AMPARs by activating serine/threonine phosphatases. Additionally, repetitive burst-firing paired with EPSPs led to input-specific long-term depression (LTD), affecting Ca(2+) impermeable AMPARs via protein kinase C signaling. In agreement with two parallel mechanisms, simple bursts were ineffective after the light period but paired bursts induced robust LTD. In contrast, incremental LTD was generated by both conditioning protocols after the dark cycle. Together, our results demonstrate qualitative changes at neocortical glutamatergic synapses that can be induced by discharge patterns characteristic of non-rapid eye movement sleep.


Assuntos
Cálcio/metabolismo , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Sono/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Eletroencefalografia , Eletromiografia , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/efeitos dos fármacos , Fenóis/farmacologia , Poliaminas/farmacologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
18.
J Neurosci ; 31(20): 7259-63, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593310

RESUMO

Synthetic amyloid-ß protein (Aß) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aß in vitro is controversial. Here we report that intracerebroventricular injection of Aß-containing aqueous extracts of Alzheimer's disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aß. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aß-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aß. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aß, did not significantly affect the Aß-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aß dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aß.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Hipocampo/patologia , Potenciação de Longa Duração/fisiologia , Inibição Neural/imunologia , Fragmentos de Peptídeos/administração & dosagem , Proteínas PrPC/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Hipocampo/metabolismo , Humanos , Injeções Intraventriculares , Masculino , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas PrPC/imunologia , Ratos , Ratos Wistar
19.
Nat Med ; 11(5): 556-61, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15834427

RESUMO

One of the most clinically advanced forms of experimental disease-modifying treatment for Alzheimer disease is immunization against the amyloid beta protein (Abeta), but how this may prevent cognitive impairment is unclear. We hypothesized that antibodies to Abeta could exert a beneficial action by directly neutralizing potentially synaptotoxic soluble Abeta species in the brain. Intracerebroventricular injection of naturally secreted human Abeta inhibited long-term potentiation (LTP), a correlate of learning and memory, in rat hippocampus in vivo but a monoclonal antibody to Abeta completely prevented the inhibition of LTP when injected after Abeta. Size fractionation showed that Abeta oligomers, not monomers or fibrils, were responsible for inhibiting LTP, and an Abeta antibody again prevented such inhibition. Active immunization against Abeta was partially effective, and the effects correlated positively with levels of antibodies to Abeta oligomers. The ability of exogenous and endogenous antibodies to rapidly neutralize soluble Abeta oligomers that disrupt synaptic plasticity in vivo suggests that treatment with such antibodies might show reversible cognitive deficits in early Alzheimer disease.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/imunologia , Hipocampo/metabolismo , Imunização/métodos , Fragmentos de Peptídeos/imunologia , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Cromatografia em Gel , Cricetinae , Cricetulus , Eletrofisiologia , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Imunoprecipitação , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Testes de Neutralização , Fragmentos de Peptídeos/farmacologia , Ratos , Sinapses/fisiologia
20.
Proc Natl Acad Sci U S A ; 106(48): 20504-9, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19918059

RESUMO

Currently, treatment with the relatively low-affinity NMDA receptor antagonist memantine provides limited benefit in Alzheimer's disease (AD). One probable dose-limiting factor in the use of memantine is the inhibition of NMDA receptor-dependent synaptic plasticity mechanisms believed to underlie certain forms of memory. Moreover, amyloid-beta protein (Abeta) oligomers that are implicated in causing the cognitive deficits of AD potently inhibit this form of plasticity. Here we examined if subtype-preferring NMDA receptor antagonists could preferentially protect against the inhibition of NMDA receptor-dependent plasticity of excitatory synaptic transmission by Abeta in the hippocampus in vivo. Using doses that did not affect control plasticity, antagonists selective for NMDA receptors containing GluN2B but not other GluN2 subunits prevented Abeta(1-42) -mediated inhibition of plasticity. Evidence that the proinflammatory cytokine TNFalpha mediates this deleterious action of Ass was provided by the ability of TNFalpha antagonists to prevent Abeta(1-42) inhibition of plasticity and the abrogation of a similar disruptive effect of TNFalpha using a GluN2B-selective antagonist. Moreover, at nearby synapses that were resistant to the inhibitory effect of TNFalpha, Abeta(1-42) did not significantly affect plasticity. These findings suggest that preferentially targeting GluN2B subunit-containing NMDARs may provide an effective means of preventing cognitive deficits in early Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Glutâmico/metabolismo , Memantina/farmacologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/fisiologia , Doença de Alzheimer/prevenção & controle , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Hipocampo/fisiologia , Masculino , Memantina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA