Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639589

RESUMO

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Assuntos
Aldeído Desidrogenase , Anticorpos , Humanos , Azidas , Carcinogênese , Química Click , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
2.
Biomaterials ; 238: 119843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062147

RESUMO

The early in vivo diagnosis of infectious disease foci is largely hindered by invasion and concealment of pathogens in host cells, making it difficult for conventional probes to detect and analyze intracellular pathogens. Taking advantage of the excessively produced reactive oxygen species (ROS) within host cells, herein we report the design of thiol-hemiketal blocked N-azidoacetyl galactosamine (Ac3GalNAzSP), an azido unnatural sugar bearing an unprecedent designed ROS-responsive moiety for targeted labelling of infected host cells. Ac3GalNAzSP showed great stability under physiological conditions, specifically released active unnatural sugar in host cells overproducing ROS, metabolically labeled infected host cells with azido groups, and enabled targeting in vivo infection sites by subsequent Click Chemistry reactions, substantiating an unprecedented approach for targeting infected host cells. This technique could be a powerful tool for early in vivo diagnosis and targeted treatment of infectious disease.


Assuntos
Química Click , Açúcares , Carboidratos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA