RESUMO
Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
Assuntos
Internacionalidade , Programas Nacionais de Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Bases de Dados Factuais , Eritrócitos/metabolismo , Fator de Transcrição GATA1/genética , Humanos , Fenótipo , Locos de Características Quantitativas , Receptores de Trombopoetina/genética , Medicina Estatal , Reino UnidoRESUMO
Pyruvate kinase (PK) is a key enzyme of anaerobic glycolysis. The genetic heterogeneity of PK deficiency (PKD) is high, and over 400 unique variants have been identified. Twenty-nine patients who had been diagnosed as PKD genetically in seven distinct paediatric haematology departments were evaluated. Fifteen of 23 patients (65.2%) had low PK levels. The PK:hexokinase ratio had 100% sensitivity for PKD diagnosis, superior to PK enzyme assay. Two novel intronic variants (c.695-1G>A and c.694+43C>T) have been described. PKD should be suspected in patients with chronic non-spherocytic haemolytic anaemia, even if enzyme levels are falsely normal. Total PKLR gene sequencing is necessary for the characterization of patients with PKD and for genetic counselling.
Assuntos
Anemia Hemolítica Congênita não Esferocítica , Íntrons , Piruvato Quinase , Erros Inatos do Metabolismo dos Piruvatos , Humanos , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Masculino , Feminino , Erros Inatos do Metabolismo dos Piruvatos/genética , Criança , Pré-Escolar , Anemia Hemolítica Congênita não Esferocítica/genética , Turquia , Lactente , Adolescente , MutaçãoRESUMO
Recent evidence suggests that systemic conditions, particularly those associated with inflammation, can affect erythrocyte deformability in the absence of haematological conditions. In this exploratory study, we investigated the relationship between systemic inflammatory status and erythrocyte deformability (using osmotic gradient ektacytometry) in a heterogenous study population consisting of individuals with no medical concerns, chronic conditions, and acute illness, providing a wide range of systemic inflammation severity. 22 participants were included in a prospective observational study. Maximum Elongation Index (EImax) in ektacytometry served as the readout for erythrocyte deformability. Inflammatory status was assessed using C-reactive protein (CRP) and self-reported symptoms associated with inflammatory activation (Sickness Questionnaire Scores, SicknessQ). In a univariate linear regression, both CRP and SicknessQ scores significantly predicted EImax (CRP: F(1,20) = 7.751, p < 0.05 (0.011), R2 = 0.279; SicknessQ: F(1,18) = 4.831, p < 0.05 (0.041), R2 = 0.212). Sensitivity analyses with multivariable linear regression correcting for age showed concordant findings. Results suggest a linear relationship between erythrocyte deformability and biochemical and clinical markers of systemic inflammation. Replication of findings in a larger study, and mechanisms and clinical consequences need further in investigation.
Assuntos
Proteína C-Reativa , Deformação Eritrocítica , Inflamação , Humanos , Inflamação/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Proteína C-Reativa/análise , Adulto , Estudos Prospectivos , Idoso , Biomarcadores/sangue , Eritrócitos/metabolismo , Eritrócitos/patologia , Modelos LinearesRESUMO
OBJECTIVES: Many children leave the PICU with anemia. The mechanisms of post-PICU anemia are poorly investigated, and treatment of anemia, other than blood, is rarely started during PICU. We aimed to characterize the contributions of iron depletion (ID) and/or inflammation in the development of post-PICU anemia and to explore the utility of hepcidin (a novel iron marker) at detecting ID during inflammation. DESIGN: Post hoc analysis of a single-center prospective study (November 2019 to September 2022). SETTING: PICU, quaternary center, Canada. PATIENTS: Children admitted to PICU with greater than or equal to 48 hours of invasive or greater than or equal to 96 hours of noninvasive ventilation. We excluded patients with preexisting conditions causing anemia or those admitted after cardiac surgery. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Hematological and iron profiles were performed at PICU discharge on 56 participants of which 37 (37/56) were diagnosed with anemia. Thirty-three children (33/56; 59%) were younger than 2 years. Median Pediatric Logistic Organ Dysfunction score was 11 (interquartile range, 6-16). Twenty-four of the 37 anemic patients had repeat bloodwork 2 months post-PICU. Of those, four (4/24; 16%) remained anemic. Hematologic profiles were categorized as: anemia of inflammation (AI), iron deficiency anemia (IDA), IDA with inflammation, and ID (low iron stores without anemia). Seven (7/47; 15%) had AI at discharge, and one had persistent AI post-PICU. Three patients (3/47; 6%) had IDA at discharge; of which one was lost to follow-up and the other two were no longer anemic but had ID post-PICU. Eleven additional patients developed ID post-PICU. In the exploratory analysis, we identified a diagnostic cutoff value for ID during inflammation from the receiver operating characteristic curve for hepcidin of 31.9 pg/mL. This cutoff would increase the detection of ID at discharge from 6% to 34%. CONCLUSIONS: The burden of ID in children post-PICU is high and better management strategies are required. Hepcidin may increase the diagnostic yield of ID in patients with inflammation.
Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Humanos , Criança , Hepcidinas , Estudos Prospectivos , Estado Terminal , Anemia/diagnóstico , Anemia/epidemiologia , Anemia/etiologia , Ferro , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/etiologia , InflamaçãoRESUMO
INTRODUCTION: James Lind Alliance (JLA) Priority Setting Partnerships (PSPs) produce 'Top 10' lists of health and care research priorities through a structured, shared decision-making process with patients or service users, carers and health or care professionals who identify questions that are most important to them. To date, over 150 PSPs in different areas of health and care have published research priorities. Some PSPs share similar priorities, which could be combined, promoted and addressed through collaborative research to increase value and reduce research waste. AIM: The aim of this study was to identify overarching themes common to JLA PSP priorities across different areas of health and care. METHODS: Our analysis included 'Top 10' research priorities produced by UK-based JLA PSPs between 2016 and 2020. The priorities were coded deductively by the Health Research Classification System (HRCS) health category and research activity. We then carried out online workshops with patients, service users and carers to generate new codes not already captured by this framework. Within each code, multistakeholder inductive thematic analysis was used to identify overarching themes, defined as encompassing priorities from three or more PSPs covering two or more health categories. We used codesign methods to produce an interactive tool for end users to navigate the overarching themes. RESULTS: Five hundred and fifteen research priorities from 51 PSPs were included in our analysis. The priorities together encompassed 20 of 21 HRCS health categories, the most common being 'generic health relevance' (22%), 'mental health' (18%) and 'musculoskeletal' (14%). We identified 89 overarching themes and subthemes, which we organised into a hierarchy with seven top-level themes: quality of life, caregivers and families, causes and prevention, screening and diagnosis, treatment and management, services and systems and social influences and impacts. CONCLUSION: There are many overarching themes common to research priorities across multiple areas of health and care. To facilitate new research and research funding, we have developed an interactive tool to help researchers, funders and patients or service users to explore these priority topics. This is freely available to download online. PATIENT OR PUBLIC CONTRIBUTION: Patients or service users and carers were involved throughout the study, including deciding the aims, designing the study, analysing priorities to identify themes, interpreting and reporting the findings.
Assuntos
Prioridades em Saúde , Humanos , Reino Unido , Pesquisa sobre Serviços de Saúde , Tomada de Decisão Compartilhada , PesquisaRESUMO
Antenatal screening/testing of pregnant women should be carried out according to the guidelines of the National Health Service (NHS) Sickle Cell and Thalassaemia Screening Programme. Newborn screening and, when necessary, follow-up testing and referral, should be carried out according to the guidelines of the NHS Sickle Cell and Thalassaemia Screening Programme. All babies under 1 year of age arriving in the United Kingdom should be offered screening for sickle cell disease (SCD). Preoperative screening for SCD should be carried out in patients from ethnic groups in which there is a significant prevalence of the condition. Emergency screening with a sickle solubility test must always be followed by definitive analysis. Laboratories performing antenatal screening should utilise methods that are capable of detecting significant variants and are capable of quantitating haemoglobins A2 and F at the cut-off points required by the national antenatal screening programme. The laboratory must ensure a provisional report is available for antenatal patients within three working days from sample receipt.
Assuntos
Anemia Falciforme , Hematologia , Hemoglobinopatias , Talassemia , Recém-Nascido , Feminino , Humanos , Gravidez , Medicina Estatal , Hemoglobinopatias/diagnóstico , Anemia Falciforme/diagnóstico , Anemia Falciforme/epidemiologia , Triagem Neonatal/métodos , Talassemia/diagnósticoRESUMO
BACKGROUND: Sickle cell disease (SCD), one of the commonest severe monogenic disorders, is caused by the inheritance of two abnormal haemoglobin (beta-globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Kidney disease is a frequent and potentially severe complication in people with SCD. Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function present for more than three months. Sickle cell nephropathy refers to the spectrum of kidney complications in SCD. Glomerular damage is a cause of microalbuminuria and can develop at an early age in children with SCD, with increased prevalence in adulthood. In people with sickle cell nephropathy, outcomes are poor as a result of the progression to proteinuria and chronic kidney insufficiency. Up to 12% of people who develop sickle cell nephropathy will develop end-stage renal disease. This is an update of a review first published in 2017. OBJECTIVES: To assess the effectiveness of any intervention for preventing or reducing kidney complications or chronic kidney disease in people with sickle cell disease. Possible interventions include red blood cell transfusions, hydroxyurea, and angiotensin-converting enzyme inhibitors (ACEIs), either alone or in combination. SEARCH METHODS: We searched for relevant trials in the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, CENTRAL, MEDLINE, Embase, seven other databases, and two other trials registers. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing interventions to prevent or reduce kidney complications or CKD in people with SCD. We applied no restrictions related to outcomes examined, language, or publication status. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial eligibility, extracted data, assessed the risk of bias, and assessed the certainty of the evidence (GRADE). MAIN RESULTS: We included three RCTs with 385 participants. We rated the certainty of the evidence as low to very low across different outcomes according to GRADE methodology, downgrading for risk of bias concerns, indirectness, and imprecision. Hydroxyurea versus placebo One RCT published in 2011 compared hydroxyurea to placebo in 193 children aged nine to 18 months. We are unsure if hydroxyurea compared to placebo reduces or prevents progression of kidney disease assessed by change in glomerular filtration rate (mean difference (MD) 0.58 mL/min /1.73 m2, 95% confidence interval (CI) -14.60 to 15.76; 142 participants; very low certainty). Hydroxyurea compared to placebo may improve the ability to concentrate urine (MD 42.23 mOsm/kg, 95% CI 12.14 to 72.32; 178 participants; low certainty), and may make little or no difference to SCD-related serious adverse events, including acute chest syndrome (risk ratio (RR) 0.39, 99% CI 0.13 to 1.16; 193 participants; low certainty), painful crisis (RR 0.68, 99% CI 0.45 to 1.02; 193 participants; low certainty); and hospitalisations (RR 0.83, 99% CI 0.68 to 1.01; 193 participants; low certainty). No deaths occurred in either trial arm and the RCT did not report quality of life. Angiotensin-converting enzyme inhibitors versus placebo One RCT published in 1998 compared an ACEI (captopril) to placebo in 22 adults with normal blood pressure and microalbuminuria. We are unsure if captopril compared to placebo reduces proteinuria (MD -49.00 mg/day, 95% CI -124.10 to 26.10; 22 participants; very low certainty). We are unsure if captopril reduces or prevents kidney disease as measured by creatinine clearance; the trial authors stated that creatinine clearance remained constant over six months in both groups, but provided no comparative data (very low certainty). The RCT did not report serious adverse events, all-cause mortality, or quality of life. Angiotensin-converting enzyme inhibitors versus vitamin C One RCT published in 2020 compared an ACEI (lisinopril) with vitamin C in 170 children aged one to 18 years with normal blood pressure and microalbuminuria. It reported no data we could analyse. We are unsure if lisinopril compared to vitamin C reduces proteinuria in this population: the large drop in microalbuminuria in both arms of the trial after only one month on treatment may have been due to an overestimation of microalbuminuria at baseline rather than a true effect. The RCT did not report serious adverse events, all-cause mortality, or quality of life. AUTHORS' CONCLUSIONS: We are unsure if hydroxyurea improves glomerular filtration rate or reduces hyperfiltration in children aged nine to 18 months, but it may improve their ability to concentrate urine and may make little or no difference to the incidence of acute chest syndrome, painful crises, and hospitalisations. We are unsure if ACEI compared to placebo has any effect on preventing or reducing kidney complications in adults with normal blood pressure and microalbuminuria. We are unsure if ACEI compared to vitamin C has any effect on preventing or reducing kidney complications in children with normal blood pressure and microalbuminuria. No RCTs assessed red blood cell transfusions or any combined interventions to prevent or reduce kidney complications. Due to lack of evidence, we cannot comment on the management of children aged over 18 months or adults with any known genotype of SCD. We have identified a lack of adequately designed and powered studies, although we found four ongoing trials since the last version of this review. Only one ongoing trial addresses renal function as a primary outcome in the short term, but such interventions have long-term effects. Trials of hydroxyurea, ACEIs or red blood cell transfusion in older children and adults are urgently needed to determine any effect on prevention or reduction of kidney complications in people with SCD.
Assuntos
Síndrome Torácica Aguda , Anemia Falciforme , Falência Renal Crônica , Criança , Adulto , Humanos , Adolescente , Hidroxiureia/uso terapêutico , Antidrepanocíticos/uso terapêutico , Síndrome Torácica Aguda/induzido quimicamente , Síndrome Torácica Aguda/complicações , Síndrome Torácica Aguda/tratamento farmacológico , Captopril/uso terapêutico , Lisinopril/uso terapêutico , Creatinina , Anemia Falciforme/complicações , Proteinúria/etiologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Ácido Ascórbico/uso terapêuticoRESUMO
Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.
Assuntos
Transporte Biológico/genética , Eritrócitos/metabolismo , Gases/sangue , Oxigênio/sangue , Adulto , Idoso , Dióxido de Carbono/sangue , Citoplasma/metabolismo , Feminino , Voluntários Saudáveis , Hemoglobinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula ÚnicaRESUMO
BACKGROUND: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. METHODS: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. RESULTS: We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. CONCLUSION: Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.
Assuntos
Anemia Diseritropoética Congênita/genética , Predisposição Genética para Doença , Glicoproteínas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Anemia Diseritropoética Congênita/patologia , Feminino , Regulação da Expressão Gênica/genética , Testes Genéticos , Genética Populacional , Humanos , Masculino , Complexos Multiproteicos/genética , Mutação/genéticaRESUMO
The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered. To enable detailed analysis of this rare disorder we have validated a culture system which recapitulates all of the cardinal haematological features of CDA-I, including the formation of the pathognomonic 'spongy' heterochromatin seen by electron microscopy. Using a variety of cell and molecular biological approaches we discovered that erythroid cells in this condition show a delay during terminal erythroid differentiation, associated with increased proliferation and widespread changes in chromatin accessibility. We also show that the proteins encoded by CDAN1 and CDIN1 are enriched in nucleoli which are structurally and functionally abnormal in CDA-I. Together these findings provide important pointers to the pathways affected in CDA-I which for the first time can now be pursued in the tractable culture system utilised here.
Assuntos
Anemia Diseritropoética Congênita , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Células Eritroides , Eritropoese , Glicoproteínas/genética , Humanos , Proteínas Nucleares/genéticaRESUMO
Methemoglobinemia is a rare disorder associated with oxidization of divalent ferro-iron of hemoglobin (Hb) to ferri-iron of methemoglobin (MetHb). Methemoglobinemia can result from either inherited or acquired processes. Acquired forms are the most common, mainly due to the exposure to substances that cause oxidation of the Hb both directly or indirectly. Inherited forms are due either to autosomal recessive variants in the CYB5R3 gene or to autosomal dominant variants in the globin genes, collectively known as HbM disease. Our recommendations are based on a systematic literature search. A series of questions regarding the key signs and symptoms, the methods for diagnosis, the clinical management in neonatal/childhood/adulthood period, and the therapeutic approach of methemoglobinemia were formulated and the relative recommendations were produced. An agreement was obtained using a Delphi-like approach and the experts panel reached a final consensus >75% of agreement for all the questions.
Assuntos
Metemoglobinemia/diagnóstico , Metemoglobinemia/terapia , Consenso , Diagnóstico Diferencial , Gerenciamento Clínico , Humanos , Metemoglobinemia/fisiopatologiaRESUMO
We describe two unrelated patients, both heterozygous for an unstable hemoglobin (Hb) variant named Hb Calgary (HBB: c.194G>T) that causes severe hemolytic anemia and dyserythorpoietic, resulting in transfusion dependence and iron overload. The molecular pathogenesis is a missense variation on the ß-globin gene, presumed to lead to an unstable Hb. The phenotype of Hb Calgary is particularly severe presenting as transfusion-dependent anemia in early infancy, precluding phenotypic diagnosis and highlighting the importance of early genetic testing in order to make an accurate diagnosis.
Assuntos
Hemoglobinas Anormais , Talassemia beta , Hemoglobinas Anormais/genética , Heterozigoto , Humanos , Fenótipo , Globinas beta/genética , Talassemia beta/diagnóstico , Talassemia beta/genéticaRESUMO
During tubo-ovarian high-grade serous carcinoma (HGSC) progression, tumoral cells undergo phenotypic changes in their epithelial marker profiles, which are essential for dissemination processes. Here, we set out to determine whether standard epithelial markers can predict HGSC patient prognosis. Levels of E-CADH, KRT7, KRT18, KRT19 were quantified in 18 HGSC cell lines by Western blot and in a Discovery cohort tissue microarray (TMA) (n = 101 patients) using immunofluorescence. E-CADH and KRT7 levels were subsequently analyzed in the TMA of the Canadian Ovarian Experimental Unified Resource cohort (COEUR, n = 1158 patients) and in public datasets. Epithelial marker expression was highly variable in HGSC cell lines and tissues. In the Discovery cohort, high levels of KRT7 and KRT19 were associated with an unfavorable prognosis, whereas high E-CADH expression indicated a better outcome. Expression of KRT7 and E-CADH gave a robust combination to predict overall survival (OS, p = 0.004) and progression free survival (PFS, p = 5.5 × 10-4) by Kaplan-Meier analysis. In the COEUR cohort, the E-CADH-KRT7 signature was a strong independent prognostic biomarker (OS, HR = 1.6, p = 2.9 × 10-4; PFS, HR = 1.3, p = 0.008) and predicted a poor patient response to chemotherapy (p = 1.3 × 10-4). Our results identify a combination of two epithelial markers as highly significant indicators of HGSC patient prognosis and treatment response.
Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias das Tubas Uterinas/metabolismo , Queratina-7/metabolismo , Neoplasias Ovarianas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Cistadenocarcinoma Seroso/mortalidade , Neoplasias das Tubas Uterinas/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Queratina-19/metabolismo , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/mortalidade , Prognóstico , Intervalo Livre de Progressão , Neoplasias Gástricas/metabolismo , Vimentina/metabolismoRESUMO
BACKGROUND: Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RµS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories. METHODS AND FINDINGS: We used RµS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l'Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec-Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%-69%), and pT3a (22%-49%) was more frequent than pT3b (9%-12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets. CONCLUSIONS: In this study, we developed classification models for the analysis of RµS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RµS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P.
Assuntos
Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Aprendizado de Máquina/normas , Microscopia Óptica não Linear/normas , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Canadá/epidemiologia , Carcinoma Intraductal não Infiltrante/epidemiologia , Carcinoma Intraductal não Infiltrante/patologia , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Microscopia Óptica não Linear/métodos , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
With the developing COVID-19 pandemic, patients with inherited anaemias require specific advice regarding isolation and changes to usual treatment schedules. The National Haemoglobinopathy Panel (NHP) has issued guidance on the care of patients with sickle cell disease, thalassaemia, Diamond Blackfan anaemia (DBA), congenital dyserythropoietic anaemia (CDA), sideroblastic anaemia, pyruvate kinase deficiency and other red cell enzyme and membrane disorders. Cascading of accurate information for clinicians and patients is paramount to preventing adverse outcomes, such as patients who are at increased risk of fulminant bacterial infection due to their condition or its treatment erroneously self-isolating if their fever is mistakenly attributed to a viral cause, delaying potentially life-saving antibiotic therapy. Outpatient visits should be minimised for most patients, however some, such as first transcranial dopplers for children with sickle cell anaemia should not be delayed as known risk of stroke will outweigh the unknown risk from COVID-19 infection. Blood transfusion programmes should be continued, but specific changes to usual clinical pathways can be instituted to reduce risk of patient exposure to COVID-19, as well as contingency planning for possible reductions in blood available for transfusions. Bone marrow transplants for these disorders should be postponed until further notice. With the current lack of evidence on the risk and complications of COVID-19 infection in these patients, national data collection is ongoing to record outcomes and eventually to identify predictors of disease severity, particularly important if further waves of infection travel through the population.
Assuntos
Anemia/complicações , Anemia/terapia , Betacoronavirus , Infecções por Coronavirus/complicações , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/complicações , Pneumonia Viral/prevenção & controle , Transfusão de Sangue , Transplante de Medula Óssea , COVID-19 , Infecção Hospitalar/prevenção & controle , Humanos , SARS-CoV-2RESUMO
Diamond-Blackfan Anemia (DBA) is a rare inherited form of pure red cell aplasia that usually manifests in infancy or early childhood, and is characterized by normochromic macrocytic anemia and bone marrow erythroblastopenia. The majority of DBA cases are associated with mutations in ribosomal protein genes. Here, we describe a Lebanese girl with RPL5-mutated DBA unresponsive to steroid treatment who died from complications following late hematopoietic stem cell transplantation performed at the age of 15 years.
Assuntos
Anemia de Diamond-Blackfan/genética , Sequência de Bases , Resistência a Medicamentos/genética , Mutação da Fase de Leitura , Proteínas Ribossômicas/genética , Deleção de Sequência , Adolescente , Aloenxertos , Anemia de Diamond-Blackfan/terapia , Criança , Pré-Escolar , Evolução Fatal , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Recém-Nascido , Líbano , EsteroidesRESUMO
Congenital dyserythropoietic anaemia type I (CDA-I) is one of a heterogeneous group of inherited anaemias characterised by ineffective erythropoiesis. CDA-I is caused by bi-allelic mutations in either CDAN1 or C15orf41 and, to date, 56 causative mutations have been documented. The diagnostic pathway is reviewed and the utility of genetic testing in reducing the time taken to reach an accurate molecular diagnosis and avoiding bone marrow aspiration, where possible, is described. The management of CDA-I patients is discussed, highlighting both general and specific measures which impact on disease progression. The use of interferon alpha and careful management of iron overload are reviewed and suggest the most favourable outcomes are achieved when CDA-I patients are managed with a holistic and multidisciplinary approach. Finally, the current understanding of the molecular and cellular pathogenesis of CDA-I is presented, highlighting critical questions likely to lead to improved therapy for this disease.