Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 10(8): 759-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817067

RESUMO

We designed ß-strand peptides that stabilize integral membrane proteins (IMPs). ß-strand peptides self-assemble in solution as filaments and become restructured upon association with IMPs; resulting IMP-ß-strand peptide complexes resisted aggregation when diluted in detergent-free buffer and were visible as stable, single particles with low detergent background in electron micrographs. ß-strand peptides enabled clear visualization of flexible conformations in the highly dynamic ATP-binding cassette (ABC) transporter MsbA.


Assuntos
Proteínas de Membrana/química , Nanoestruturas/química , Peptídeos/química , Peptídeos/síntese química , Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Dicroísmo Circular , Proteínas de Membrana/síntese química , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Chem Sci ; 14(29): 7842-7866, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502330

RESUMO

RNA interference based therapeutic gene silencing is an emerging platform for managing highly metastatic breast cancer. Cytosolic delivery of functional siRNA remains the key obstacle for efficient RNAi therapy. To overcome the challenges of siRNA delivery, we have engineered a vitamin E-tethered, short, optimum protease stabilized facial lipopeptide based non-immunogenic, biocompatible siRNA transporter to facilitate the clinical translation in future. Our designed lipopeptide has an Arginine-Sarcosine-Arginine segment for providing optimum protease-stability, minimizing adjacent arginine-arginine repulsion and reducing intermolecular aggregation and α-tocopherol as the lipidic moiety for facilitating cellular permeabilization. Interestingly, our designed non-immunogenic siRNA transporter has exhibited significantly better long term transfection efficiency than HiPerFect and can transfect hard to transfect primary cell line, HUVEC. Our engineered siRNA therapeutics demonstrated high efficacy in managing metastasis against triple negative breast cancer by disrupting the crosstalk of endothelial cells and MDA-MB-231 and reduced stemness and metastatic markers, as evidenced by downregulating critical oncogenic pathways. Our study aimed at silencing Notch1 signalling to achieve "multi-targeted" therapy with a single putative molecular medicine. We have further developed mechanistically rational combination therapy combining Notch1 silencing with a repurposed drug m-TOR inhibitor, metformin, which demonstrated synergistic interaction and enhanced antitumor efficacy against cancer metastasis.

3.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638450

RESUMO

Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia/métodos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanotecnologia , Neoplasias/tratamento farmacológico
4.
Nanotechnology ; 22(49): 494004, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22101316

RESUMO

Ischemic disease causes a large number of deaths and significant clinical problems worldwide. Therapeutic angiogenesis, strengthened by advances in growth-factor-based therapies, is a promising solution to ischemic pathologies. Major challenges in therapeutic angiogenesis are the lack of stability of native angiogenic proteins and also providing sustained delivery of biologically active proteins at the ischemic sites. This paper will discuss various protein engineering strategies to develop stabilized proangiogenic proteins and several biomaterial technologies used to amplify the angiogenic outcome by delivering biologically active growth factors in a sustained manner.


Assuntos
Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Engenharia Tecidual/métodos , Indutores da Angiogênese/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Modelos Moleculares , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Engenharia de Proteínas/métodos
5.
Nanotechnology ; 22(26): 265101, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576779

RESUMO

The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) copolymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibits an IC(50) = 0.77 ± 0.11 µM comparable to that of free cisplatin (IC(50) = 0.44 ± 0.09 µM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and release cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibit significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo, with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Citometria de Fluxo , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Nanopartículas/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/patologia , Resultado do Tratamento
6.
J R Soc Interface ; 4(15): 587-606, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17251160

RESUMO

Half a century has passed since the hydrogen-bonded secondary structures of polypeptides and proteins were first recognized. An extraordinary wealth of conformational information is now available on peptides and proteins, which are formed of alpha-amino acid residues. More recently, the discovery of well-folded structures in oligopeptides containing beta-amino acids has focused a great deal of current interest on the conformational properties of peptides constructed from higher homologues (omega) of alpha-amino acids. This review examines the nature of intramolecularly hydrogen-bonded conformations of hybrid peptides formed by amino acid residues, with a varying number of backbone atoms. The beta-turn, a ubiquitous structural feature formed by two residue (alphaalpha) segments in proteins and peptides, is stabilized by a 10-atom (C10) intramolecular 4-->1 hydrogen bond. Hybrid turns may be classified by comparison with their alphaalpha counterparts. The available crystallographic information on hydrogen-bonded hybrid turns is surveyed in this review. Several recent examples demonstrate that individual omega-amino acid residues and hybrid dipeptide segments may be incorporated into the regular structures of alpha-peptides. Examples of both peptide helices and hairpins are presented. The present review explores the relationships between folded conformations in hybrid sequences and their counterparts in all alpha-residue sequences. The use of stereochemically constrained omega-residues promises to expand the range of peptide design strategies to include omega-amino acids. This approach is exemplified by well-folded structures like the C12 (alphagamma) and C14 (gammagamma) helices formed in short peptides containing multiply substituted gamma-residues. The achiral gamma-residue gabapentin is a readily accessible building block in the design of peptides containing gamma-amino acids. The construction of globular polypeptide structures using diverse hybrid sequences appears to be a realistic possibility.


Assuntos
Aminoácidos/química , Peptídeos/química , Ligação de Hidrogênio , Isomerismo , Estrutura Secundária de Proteína
7.
Sci Rep ; 7(1): 6509, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747673

RESUMO

Designing biologically inspired nanoscale molecular assembly with desired functionality is a challenging endeavour. Here we report the designing of fibrin-inspired nanostructured peptide based sealants which facilitate remarkably fast entrapping of blood corpuscles (~28 seconds) in contrast to fibrin (~56 seconds). Our engineered sealants are stabilized by lysine-aspartate ionic interactions and also by Nε(γ-glutamyl) lysine isopeptide bond mediated covalent interaction. Each sealant is formed by two peptides having complementary charges to promote lysine-aspartate ionic interactions and designed isopeptide bond mediated interactions. Computational analysis reveals the isopeptide bond mediated energetically favourable peptide assemblies in sealants 1-3. Our designed sealants 2 and 3 mimic fibrin-mediated clot formation mechanism in presence of transglutaminase enzyme and blood corpuscles. These fibrin-inspired peptides assemble to form sealants having superior hemostatic activities than fibrin. Designed sealants feature mechanical properties, biocompatibility, biodegradability and high adhesive strength. Such nature-inspired robust sealants might be potentially translated into clinics for facilitating efficient blood clotting to handle traumatic coagulopathy and impaired blood clotting.


Assuntos
Células Sanguíneas/metabolismo , Coagulação Sanguínea , Hemostáticos/química , Hemostáticos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ligação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA