Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(50): 19048-19054, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31685662

RESUMO

Cytarabine (AraC) is the mainstay for the treatment of acute myeloid leukemia. Although complete remission is observed in a large proportion of patients, relapse occurs in almost all the cases. The chemotherapeutic action of AraC derives from its ability to inhibit DNA synthesis by the replicative polymerases (Pols); the replicative Pols can insert AraCTP at the 3' terminus of the nascent DNA strand, but they are blocked at extending synthesis from AraC. By extending synthesis from the 3'-terminal AraC and by replicating through AraC that becomes incorporated into DNA, translesion synthesis (TLS) DNA Pols could reduce the effectiveness of AraC in chemotherapy. Here we identify the TLS Pols required for replicating through the AraC templating residue and determine their error-proneness. We provide evidence that TLS makes a consequential contribution to the replication of AraC-damaged DNA; that TLS through AraC is conducted by three different pathways dependent upon Polη, Polι, and Polν, respectively; and that TLS by all these Pols incurs considerable mutagenesis. The prominent role of TLS in promoting proficient and mutagenic replication through AraC suggests that TLS inhibition in acute myeloid leukemia patients would increase the effectiveness of AraC chemotherapy; and by reducing mutation formation, TLS inhibition may dampen the emergence of drug-resistant tumors and thereby the high incidence of relapse in AraC-treated patients.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Citarabina/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/biossíntese , Leucemia Mieloide Aguda/tratamento farmacológico , Antimetabólitos Antineoplásicos/química , Citarabina/química , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Conformação de Ácido Nucleico
2.
J Biol Chem ; 293(8): 2949-2958, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29330301

RESUMO

Acrolein, an α,ß-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from metabolic oxidation of polyamines, and it is a ubiquitous environmental pollutant. The reaction of acrolein with the N2 of guanine in DNA leads to the formation of γ-hydroxy-1-N2-propano-2' deoxyguanosine (γ-HOPdG), which can exist in DNA in a ring-closed or a ring-opened form. Here, we identified the translesion synthesis (TLS) DNA polymerases (Pols) that conduct replication through the permanently ring-opened reduced form of γ-HOPdG ((r) γ-HOPdG) and show that replication through this adduct is mediated via Rev1/Polη-, Polι/Polκ-, and Polθ-dependent pathways, respectively. Based on biochemical and structural studies, we propose a role for Rev1 and Polι in inserting a nucleotide (nt) opposite the adduct and for Pols η and κ in extending synthesis from the inserted nt in the respective TLS pathway. Based on genetic analyses and biochemical studies with Polθ, we infer a role for Polθ at both the nt insertion and extension steps of TLS. Whereas purified Rev1 and Polθ primarily incorporate a C opposite (r) γ-HOPdG, Polι incorporates a C or a T opposite the adduct; nevertheless, TLS mediated by the Polι-dependent pathway as well as by other pathways occurs in a predominantly error-free manner in human cells. We discuss the implications of these observations for the mechanisms that could affect the efficiency and fidelity of TLS Pols.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Acroleína/toxicidade , Substituição de Aminoácidos , Linhagem Celular , Adutos de DNA/síntese química , Adutos de DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Desoxiguanosina/síntese química , Desoxiguanosina/metabolismo , Poluentes Ambientais/toxicidade , Humanos , Mutagênicos/toxicidade , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , DNA Polimerase iota
3.
J Biol Chem ; 292(45): 18682-18688, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28939775

RESUMO

N3-Methyladenine (3-MeA) is formed in DNA by reaction with S-adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro, we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells.


Assuntos
Adenina/análogos & derivados , Adutos de DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Adenina/toxicidade , Biocatálise , Linhagem Celular , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Taxa de Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferência de RNA , DNA Polimerase iota , DNA Polimerase teta
4.
J Biol Chem ; 290(50): 29794-800, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26491020

RESUMO

N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways. Our biochemical studies indicate that in the Polι/Polθ pathway, Polι would carry out nucleotide insertion opposite 1-MeA from which Polθ would extend synthesis. In the Polη pathway, this Pol alone would function at both the nucleotide insertion and extension steps of TLS, and in the third pathway, Polζ would extend from the nucleotide inserted opposite 1-MeA by an as yet unidentified Pol. Whereas by pushing 1-MeA into the syn conformation and by forming Hoogsteen base pair with the T residue, Polι would carry out TLS opposite 1-MeA, the ability of Polη to replicate through 1-MeA suggests that despite its need for Watson-Crick hydrogen bonding, Polη can stabilize the adduct in its active site. Remarkably, even though Pols η and ι are quite error-prone at inserting nucleotides opposite 1-MeA, TLS opposite this lesion in human cells occurs in a highly error-free fashion. This suggests that the in vivo fidelity of TLS Pols is regulated by factors such as post-translational modifications, protein-protein interactions, and possibly others.


Assuntos
Adenina/análogos & derivados , Replicação do DNA/genética , Adenina/metabolismo , Humanos
5.
J Biol Chem ; 289(19): 13177-85, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648516

RESUMO

The biological functions of human DNA polymerase (pol) θ, an A family polymerase, have remained poorly defined. Here we identify a role of polθ in translesion synthesis (TLS) in human cells. We show that TLS through the thymine glycol (TG) lesion, the most common oxidation product of thymine, occurs via two alternative pathways, in one of which, polymerases κ and ζ function together and mediate error-free TLS, whereas in the other, polθ functions in an error-prone manner. Human polθ is comprised of an N-terminal ATPase/helicase domain, a large central domain, and a C-terminal polymerase domain; however, we find that only the C-terminal polymerase domain is required for TLS opposite TG in human cells. In contrast to TLS mediated by polκ and polζ, in which polζ would elongate the chain from the TG:A base pair formed by polκ action, the ability of polθ alone to carry out the nucleotide insertion step, as well as the subsequent extension step that presents a considerable impediment due to displacement of the 5' template base, suggests that the polθ active site can accommodate highly distorting DNA lesions.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/enzimologia , Timina/análogos & derivados , Linhagem Celular , DNA Polimerase Dirigida por DNA/genética , Fibroblastos/citologia , Humanos , Oxirredução , Estrutura Terciária de Proteína , Timina/metabolismo , DNA Polimerase teta
6.
Nat Struct Mol Biol ; 19(6): 628-32, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22562137

RESUMO

A major clinical problem in the use of cisplatin to treat cancers is tumor resistance. DNA polymerase η (Pol-η) is a crucial polymerase that allows cancer cells to cope with the cisplatin-DNA adducts that are formed during chemotherapy. We present here a structure of human Pol-η inserting deoxycytidine triphosphate (dCTP) opposite a cisplatin intrastrand cross-link (PtGpG). We show that the specificity of human Pol-η for PtGpG derives from an active site that is open to permit Watson-Crick geometry of the nascent PtGpG-dCTP base pair and to accommodate the lesion without steric hindrance. This specificity is augmented by the residues Gln38 and Ser62, which interact with PtGpG, and Arg61, which interacts with the incoming dCTP. Collectively, the structure provides a basis for understanding how Pol-η in human cells can tolerate the DNA damage caused by cisplatin chemotherapy and offers a framework for the design of inhibitors in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Adutos de DNA/síntese química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Domínio Catalítico , Cisplatino/síntese química , Cisplatino/química , Cisplatino/metabolismo , Cristalografia por Raios X , Adutos de DNA/química , Adutos de DNA/metabolismo , Nucleotídeos de Desoxicitosina/química , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA