Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057316

RESUMO

Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs' size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs' size on bacterial growth kinetics. NPs were synthesized using a sol-gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.

2.
Methods Mol Biol ; 2525: 35-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836059

RESUMO

This chapter introduces unique methodology of antibacterial activity evaluation of nanoparticles in both solution and thin films. Nanoparticles of ZnO, TiO2, and CuO are synthesized via the sol-gel method. Antibacterial tests are carried out against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria using disk diffusion and bioluminescence. To perform antibacterial tests on thin films and to overcome bacterial strains recuperation on the supports, a new method of bacterial detaching from the slides is developed based on French standard NF EN 14561.


Assuntos
Nanopartículas , Óxido de Zinco , Antibacterianos/farmacologia , Cobre , Escherichia coli , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Titânio , Óxido de Zinco/farmacologia
3.
Microorganisms ; 8(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796763

RESUMO

The introduction of a strain or consortium has often been considered as a potential solution to restore microbial ecosystems. Extensive research on the skin microbiota has led to the development of probiotic products (with live bacterial strains) that are likely to treat dysbiosis. However, the effects of such introductions on the indigenous microbiota have not yet been investigated. Here, through a daily application of Lactobacillus reuteri DSM 17938 on volunteers' forearm skin, we studied in vivo the impact of a probiotic on the indigenous skin bacterial community diversity using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) for 3 weeks. The results demonstrate that Lactobacillus reuteri DSM 17938 inoculum had a transient effect on the indigenous community, as the resilience phenomenon was observed within the skin microbiota. Moreover, Lactobacillus reuteri DSM 17938 monitoring showed that, despite a high level of detection after 2 weeks of application, thereafter the colonization rate drops drastically. The probiotic colonization rate was correlated significantly to the effect on the indigenous microbial community structure. These preliminary results suggest that the success of probiotic use and the potential health benefits resides in the interactions with the human microbiota.

4.
J Microbiol Methods ; 171: 105880, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32109500

RESUMO

The skin microbiota is characterized by high intra- and inter-variability among individuals, due to a multitude of intrinsic and extrinsic parameters such as genetics, lifestyles or pollution. This variability may be heightened due to sampling method as the skin is a multilayer organ and its outermost layer consists of dead cells. In order to investigate this biological variability in a reproducible way, we studied how sampling procedure and DNA extraction methods influence the qualitative and quantitative gathering of bacterial communities. Here, we tested a new sampling procedure that consists in exerting a slight abrasion (scrubbing) on the skin prior to swabbing and extracting DNA in order to remove squames and access deeper ecological niches. Scrubbed and non-scrubbed samples were collected from a panel of six volunteers, and four DNA extraction methods were performed on the samples. The abundance, diversity and structure of the bacterial communities were measured using qPCR technics and 16S rDNA gene-metabarcoding. Bacterial community abundance was significantly impacted by the DNA extraction method (in favor of a method designed for tissues) but not by sampling procedure, as scrubbing does not increase bacterial biomass gathered. Bacterial α- and ß-diversities were both affected by DNA extraction methods and sampling procedure. Scrubbing reveals different microbial composition by gathering bacteria living in deeper skin layer, resulting in a lower intra-personal variability. The taxonomic analysis showed that more bacteria belonging to anaerobes groups were present in scrubbed samples. We conclude that DNA extraction methods designed for tissue are not necessarily associated with high qualitative efficiency and slight scrubbing prior DNA extraction reduces intrapersonal variability and give access to a new microbial diversity.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota/genética , Pele/microbiologia , Manejo de Espécimes/métodos , Adulto , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/genética , Feminino , Humanos , RNA Ribossômico 16S/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA