Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(25): 10116-10120, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38858219

RESUMO

In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.


Assuntos
Citocinas , Técnicas Eletroquímicas , Medições Luminescentes , Estilbenos , Linfopoietina do Estroma do Timo , Citocinas/análise , Citocinas/metabolismo , Estilbenos/química , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais , Imunoensaio/métodos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Técnicas Analíticas Microfluídicas/instrumentação
2.
Anal Chem ; 95(22): 8679-8686, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218622

RESUMO

Improving the sensitivity and accuracy of bioimmunoassays has been the focus of research into the development of electrochemiluminescence (ECL) sensing platforms, as this is a critical factor in their application to practical analysis. In this work, an electrochemiluminescence-electrochemistry (ECL-EC) dual-mode biosensing platform based on an "off-on-super on" signals pattern strategy was developed for the ultrasensitive detection of Microcystin-LR (MC-LR). In this system, sulfur quantum dots (SQDs) are a novel class of ECL cathode emitter with almost no potentially toxic effects. The sensing substrate is made from rGO/Ti3C2Tx composites, whose huge specific surface area greatly reduces the possibility of aggregation-caused quenching of SQDs. The ECL detection system was constructed based on the ECL-resonance energy transfer (ERET) strategy, where methylene blue (MB) with an ECL receptor function was bound to the aptamer of MC-LR by electrostatic adsorption and the center actual distance between the donor and the acceptor was calculated to be 3.84 nm, which was verified to be in accordance with the ERET theory. Meanwhile, the introduction of Ag+ as an ECL signal-amplifying molecule greatly improved the sensitivity of sensing analysis. Based on the specific binding of MC-LR to the aptamer, the concentration of MC-LR was found to have a positive correlation with the ECL signal. Also, EC detection was realized with the benefit of the excellent electrochemical properties of MB. The dual-mode biosensor greatly improves the confidence of the detection, examination areas of 0.001-100 pg/mL with MC-LR for ECL and EC were obtained, and the detection limits are 0.17 and 0.24 pg/mL, respectively.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Pontos Quânticos/química , Medições Luminescentes , Técnicas Eletroquímicas , Transferência de Energia , Oligonucleotídeos , Limite de Detecção
3.
Anal Chem ; 95(27): 10178-10185, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368510

RESUMO

It is significantly vital to develop a convenient assay method in clinical treatment due to an atypically low abundance (∼5 µM) of bleomycin (BLM) used in clinics. Herein, an electrochemiluminescence (ECL) biosensor using a zirconium-based metal-organic frameworks (Zr-MOFs) as an intramolecular coordination-induced electrochemiluminescence (CIECL) emitter was proposed for sensitive detection of BLM. Zr-MOFs were synthesized using Zr(IV) as metal ions and 4,4',4″-nitrilotribenzoic acid (H3NTB) as ligands for the first time. The H3NTB ligand not only acts as coordination units bonding with Zr(IV) but functions as a coreactant to enhance ECL efficiency rooted in its tertiary nitrogen atoms. Specifically, a long guanine-rich (G-rich) single-stranded DNA (ssDNA) was released by the target-BLM-controlled DNA machine that could perform π-π stacking with another G-quadruplex, ssDNA-rhodamine B (S-RB), by shearing DNA's fixed sites 5'-GC-3' and the auxiliary role of exonuclease III (Exo III). Finally, due to the quenching effect of rhodamine B, a negative correlation trend was obtained between ECL intensity and BLM concentration in the range from 5.0 nM to 50 µM and the limit of detection was 0.50 nM. We believe that it is a promising approach to guide the preparation of CIECL-based functional materials and establishment of analytical methods.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Técnicas Biossensoriais/métodos , Zircônio , Técnicas Eletroquímicas , DNA/química , Bleomicina/análise , Bleomicina/química
4.
Anal Chem ; 95(16): 6725-6731, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37038771

RESUMO

The theory of aggregation-induced electrochemiluminescence (AIECL) has introduced new vitality into preparing new electrochemiluminescence (ECL) emitters. However, the progress in the application of biosensing analysis has been slow owing to the lack of AIECL-based functional nanomaterials. Herein, a biosensor was fabricated using mesoporous silica nanosphere (MSN) matrix-confined 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) as a well-ordered ECL emitter and self-designed WHPWSYC (WC-7) heptapeptide as the target capturer for CD44 detection. TPE and its co-reactant, triethylamine (TEA), were encapsulated in the MSN nanomatrix to enhance the radiation transition by limiting the intramolecular rotation of TPE molecule benefit from the spatial confinement effect, and the ECL intensity is self-enhanced by replacing electron free diffusion in the conventional ECL system. MSN-TPE-TEA can act as satisfactory sensing substrates that improve the reproducibility and batch-to-batch consistency of biosensors and functions as a stable signal label for trace analysis of biomarkers. As a substitute for antibody and hyaluronic acid, the WC-7 heptapeptide significantly reduced the steric hindrance of the sensing interface in CD44 affinity tests. Combined with the DNA strand displacement reaction, this strategy shows a good ECL response to standard CD44 antigen and MCF-7 cells with different concentrations, which is another feasible method for detecting CD44 in body fluids or living cells.


Assuntos
Técnicas Biossensoriais , Medições Luminescentes , Medições Luminescentes/métodos , Dióxido de Silício/química , Receptores de Hialuronatos , Reprodutibilidade dos Testes , Limite de Detecção , Peptídeos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
5.
Anal Chem ; 94(45): 15873-15878, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322926

RESUMO

Herein, a novel dual mode detection system of split-type photoelectrochemical (PEC) and visual immunoassay was developed to detect neuron specific enolase (NSE), which achieved simultaneous and reliable NSE detection due to the completely different signal readouts and transduction mechanism. Specifically, specific reactions of antigens and antibodies were performed in 96-microwell plates. Gold nanoparticle (Au NP)-loaded Fe3O4 (Au@Fe3O4) NPs were used as secondary antibody markers and signal regulators, which could produce a blue-colored solution in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 because of its peroxidase-like activity. Therefore, the visual detection of NSE was realized, making the results more intuitive. Meanwhile, the above biological process could also be used as part of the split-type PEC sensing platform. Oxidized TMB and Fe3+ were consumptive agents of the electron donor, which both realized the double quenching of PEC signal generated by the SnO2/MgIn2S4/Zn0.1Cd0.9S composites. Owing to the waterfall band structure, SnO2/MgIn2S4/Zn0.1Cd0.9S composites partially absorb visible light and effectively inhibit the electron-hole recombination, thereby providing significantly enhanced and stable initial signal. On the basis of the multiple signal amplification strategy and the split-type mode, NSE could be sensitively detected with a low detection limit of 14.0 fg·mL-1 (S/N = 3) and a wide linear range from 50.0 fg·mL-1 to 50.0 ng·mL-1.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Técnicas Eletroquímicas/métodos , Cádmio , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Peróxido de Hidrogênio/química , Imunoensaio/métodos , Fosfopiruvato Hidratase , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA