Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37093145

RESUMO

Organic-cation engineering has recently proven effective in flexibly regulating two-dimensional hybrid organic-inorganic perovskites (2D HOIPs) to achieve a diversity of newly emerging applications. There have been many mechanistic studies based on the structural tunability of organic cations; nevertheless, those with an emphasis on the effect solely caused by the organic cations remain lacking. To this end, here we deliberately design a set of 2D HOIPs in which the inorganic layers are kept nearly intact upon cation modification, i.e., the precursor phenethylammonium lead iodide and its four derivatives with the phenyl group's para-position H being replaced by CH3, F, Cl, and Br. By means of femtosecond time-resolved transient absorption spectroscopy and temperature-dependent/time-resolved photoluminescence spectroscopy, we interrogate the subtle impact of cation modification on phonon dynamics, coherent phonon modes, phonon-dressed exciton dynamics, and excitonic emissions. A concerted trend for phonon lifetimes and exciton relaxation lifetimes regulated by cation modification is revealed, evidencing the existence of strong exciton-phonon coupling in this 2D HOIP system. The observed mass effect can be ascribed to the change in moment of inertia of organic cations. In addition, we observe an interesting interplay of exciton kinetics pertinent to population transfers between two emissive states, likely linked to the subtle variation in crystal symmetry induced by cation modification. The mechanistic insights gained from this work would be of value for the 2D HOIPs-based applications.

2.
Mater Horiz ; 10(11): 5053-5059, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655791

RESUMO

Ammonia (NH3) plays a crucial role in the production of fertilizers, medicines, fibers, etc., which are closely relevant to the development of human society. However, the inert and nonpolar properties of NN seriously hinder artificial nitrogen fixation under mild conditions. Herein, we introduce a novel strategy to enhance the photocatalytic efficiency of N2 fixation through the directional polarization of N2 by rare earth metal atoms, which act as a local "electron transfer bridge." This bridge facilitates the transfer of delocalized electrons to the distal N atom and redirects the polarization of adsorbed N2 molecules. Taking cerium doped BiOCl (Ce-BiOCl) as an example, our results reveal that the electrons transfer to the distal N atom through the cerium atom, resulting in absorbed nitrogen molecular polarization. Consequently, the polarized nitrogen molecules exhibit an easier trend for NN cleavage and the subsequent hydrogenation process, and exhibit a greatly enhanced photocatalytic ammonia production rate of 46.7 µmol g-1 h-1 in cerium doped BiOCl, nearly 4 times higher than that of pure BiOCl. The original concept of directional polarization of N2 presented in this work not only deepens our understanding of the N2 molecular activation mechanism but also broadens our horizons for designing highly efficient catalysts for N2 fixation.

3.
J Phys Chem Lett ; 13(24): 5480-5487, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35687483

RESUMO

The emerging two-dimensional (2D) lead-halide perovskite materials hold great promise for next-generation photovoltaic and optoelectronic applications, in which phonon engineering plays a crucial role. However, detailed mechanistic exploration related to phonon effects, especially from a dynamics perspective, remains rather limited. Herein, we present a systematic demonstration of phononic fine-tuning in a prototype 2D hybrid organic-inorganic perovskite (HOIP) system, i.e., phenethylammonium lead iodide [(PEA)2PbI4] with each hydrogen atom at positions 2 (ortho), 3 (meta), and 4 (para) on the PEA's phenyl group being replaced by a fluorine atom. Through a set of joint observations via ultrafast spectroscopy and temperature-dependent photoluminescence spectroscopy, we reveal that such a fluorination can subtly exert profound impacts on its structural distortion-induced phononic properties, including coherent phonon modes, phonon-phonon/electron-phonon interactions, and the hot-phonon bottleneck effect. This work highlights the significant importance of the atomic-level tailoring of organic cations in low-dimensional HOIP systems, which is usually ignored in conventional notion and practice.

4.
Adv Mater ; 34(27): e2200612, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35543386

RESUMO

Selective oxidation of CH bonds is one of the most important reactions in organic synthesis. However, activation of the α-CH bond of ethylbenzene by use of photocatalysis-generated superoxide anions (O2 •- ) remains a challenge. Herein, the formation of individual Fe atoms on polymeric carbon nitride (CN), that activates O2  to create O2 •- for facilitating the reaction of ethylbenzene to form acetophenone, is demonstrated. By utilizing density functional theory and materials characterization techniques, it is shown that individual Fe atoms are coordinated to four N atoms of CN and the resultant low-spin Fe-N4  system (t2g 6 eg 0 ) is not only a great adsorption site for oxygen molecules, but also allows for fast transfer of electrons generated in the CN framework to adsorbed O2 , producing O2 •- . The oxidation reaction of ethylbenzene triggered by O2 •- ions turns out to have a high conversion rate of 99% as well as an acetophenone selectivity of 99%, which can be ascribed to a novel reaction pathway that is different from the conventional route involving hydroxyl radicals and the production of phenethyl alcohol. Furthermore, it possesses great potential for other CH activation reactions besides ethylbenzene oxidation.

5.
J Phys Chem Lett ; 12(46): 11295-11302, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34779639

RESUMO

Nitrate acts as a fundamental raw material in modern industrial and agricultural fields. Recently, photocatalytic nitrogen oxidation into nitrate has been expected to be an alternative method to replace the industrial nitrate synthesis process, which encounters many challenges, i.e., huge energy consumption and greenhouse gas emission. We synthesized Ce-doped W18O49 nanowires (Ce-W18O49) to realize photocatalytic nitrogen oxidation into nitrate under mild conditions. The defect state generated by coupling of Ce3+ introduction and surface plasma state acts as an "electron trap" to restrain photogenerated electrons, so as to facilitate the separation of photogenerated electron-hole pairs and prolong their lifetime. W18O49 doped with 5 mol % Ce exhibited the highest yield of nitrate (319.97 µg g-1 h-1) without any sacrificial agent, which is about 5 times higher than that of pristine W18O49. This work provides new insight into achieving high-efficiency photocatalytic nitrate evolution activity from direct N2 oxidation by controlling the energy band structure of photocatalysts.


Assuntos
Cério/química , Nanofios/química , Nitratos/química , Nitrogênio/química , Óxidos/química , Tungstênio/química , Tamanho da Partícula , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA