RESUMO
We identified a rustrela virus variant in a wild mountain lion (Puma concolor) in Colorado, USA. The animal had clinical signs and histologic lesions compatible with staggering disease. Considering its wide host range in Europe, rustrela virus should be considered as a cause for neurologic diseases among mammal species in North America.
Assuntos
Puma , Animais , Colorado/epidemiologia , Puma/virologia , Filogenia , Animais Selvagens/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/epidemiologiaRESUMO
Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.
Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Glicoproteínas/genética , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/virologia , Papagaios/genética , Isoformas de Proteínas/genética , Genética Reversa , RNA MensageiroRESUMO
Borna disease is a progressive meningoencephalitis caused by spillover of the Borna disease virus 1 (BoDV-1) to horses and sheep and has gained attention due to its zoonotic potential. New World camelids are also highly susceptible to the disease; however, a comprehensive description of the pathological lesions and viral distribution is lacking for these hosts. Here, the authors describe the distribution and severity of inflammatory lesions in alpacas (n = 6) naturally affected by this disease in comparison to horses (n = 8) as known spillover hosts. In addition, the tissue and cellular distribution of the BoDV-1 was determined via immunohistochemistry and immunofluorescence. A predominant lymphocytic meningoencephalitis was diagnosed in all animals with differences regarding the severity of lesions. Alpacas and horses with a shorter disease duration showed more prominent lesions in the cerebrum and at the transition of the nervous to the glandular part of the pituitary gland, as compared to animals with longer disease progression. In both species, viral antigen was almost exclusively restricted to cells of the central and peripheral nervous systems, with the notable exception of virus-infected glandular cells of the Pars intermedia of the pituitary gland. Alpacas likely represent dead-end hosts similar to horses and other spillover hosts of BoDV-1.
Assuntos
Doença de Borna , Vírus da Doença de Borna , Camelídeos Americanos , Doenças dos Cavalos , Meningoencefalite , Doenças dos Ovinos , Animais , Cavalos , Ovinos , Vírus da Doença de Borna/genética , Doença de Borna/patologia , Meningoencefalite/veterinária , Antígenos ViraisRESUMO
Retrospective investigation of archived tissue samples from 3 lions displaying nonsuppurative meningoencephalitis and vasculitis led to the detection of rustrela virus (RusV). We confirmed RusV antigen and RNA in cortical neurons, axons, astrocytes and Purkinje cells by reverse transcription quantitative PCR, immunohistochemistry, and in situ hybridization.
Assuntos
Leões , Meningoencefalite , Vírus , Animais , Estudos Retrospectivos , Meningoencefalite/diagnóstico , Meningoencefalite/veterinária , Imuno-HistoquímicaRESUMO
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Assuntos
COVID-19 , Saúde Única , Viroses , Animais , Humanos , Zoonoses/microbiologia , Zoonoses Virais/epidemiologia , Pandemias , Alemanha , COVID-19/epidemiologia , Viroses/epidemiologiaRESUMO
Human bornavirus encephalitis is a severe and often fatal infection caused by variegated squirrel bornavirus 1 (VSBV-1) and Borna disease virus 1 (BoDV-1). We conducted a prospective study of bornavirus etiology of encephalitis cases in Germany during 2018-2020 by using a serologic testing scheme applied along proposed graded case definitions for VSBV-1, BoDV-1, and unspecified bornavirus encephalitis. Of 103 encephalitis cases of unknown etiology, 4 bornavirus infections were detected serologically. One chronic case was caused by VSBV-1 after occupational-related contact of a person with exotic squirrels, and 3 acute cases were caused by BoDV-1 in virus-endemic areas. All 4 case-patients died. Bornavirus etiology could be confirmed by molecular methods. Serologic testing for these cases was virus specific, discriminatory, and a practical diagnostic option for living patients if no brain tissue samples are available. This testing should be guided by clinical and epidemiologic suspicions, such as residence in virus-endemic areas and animal exposure.
Assuntos
Bornaviridae , Encefalite , Animais , Bornaviridae/genética , Alemanha , Humanos , Estudos Prospectivos , RNA Viral , ZoonosesRESUMO
Members of the family Bornaviridae produce enveloped virions containing a linear negative-sense non-segmented RNA genome of about 9 kb. Bornaviruses are found in mammals, birds, reptiles and fish. The most-studied viruses with public health and veterinary impact are Borna disease virus 1 and variegated squirrel bornavirus 1, both of which cause fatal encephalitis in humans. Several orthobornaviruses cause neurological and intestinal disorders in birds, mostly parrots. Endogenous bornavirus-like sequences occur in the genomes of various animals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bornaviridae, which is available at ictv.global/report/bornaviridae.
Assuntos
Vírus da Doença de Borna/classificação , Bornaviridae/classificação , Animais , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Vírus da Doença de Borna/fisiologia , Vírus da Doença de Borna/ultraestrutura , Bornaviridae/genética , Bornaviridae/fisiologia , Bornaviridae/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Humanos , Vírion/ultraestrutura , Replicação ViralRESUMO
We present the complete genome sequences of Caribbean watersnake bornavirus (CWBV) and Mexican black-tailed rattlesnake bornavirus (MRBV), which we identified in archived raw transcriptomic read data of a Caribbean watersnake (Tretanorhinus variabilis) and a Mexican black-tailed rattlesnake (Crotalus molossus nigrescens), respectively. The genomes of CWBV and MRBV have a length of about 8,900 nucleotides and comprise the complete coding regions and the untranslated regions. The overall genomic makeup and predicted gene content is typical for members of the genus Orthobornavirus within the family Bornaviridae. Alternative splicing was detected for the L and M genes. Based on a phylogenetic analysis of all viral proteins, we consider both viruses to be members of a single novel species within the genus Orthobornavirus. Both viruses form a distinct outgroup to all currently known orthobornaviruses. Based on the novel virus genomes, we furthermore identified closely related endogenous bornavirus-like nucleoprotein sequences in transcriptomic data of veiled chameleons (Chamaeleo calyptratus) and a common lancehead (Bothrops atrox).
Assuntos
Bornaviridae/classificação , Bornaviridae/isolamento & purificação , Colubridae/virologia , Viperidae/virologia , Sequência de Aminoácidos , Animais , Bornaviridae/genética , Região do Caribe , Crotalus/virologia , Genoma Viral , México , Filogenia , TranscriptomaRESUMO
BACKGROUND: The true burden and geographical distribution of human Borna disease virus 1 (BoDV-1) encephalitis is unknown. All detected cases so far have been recorded in Bavaria, southern Germany. CASE PRESENTATION: A retrospective laboratory and epidemiological investigation of a 2017 case of fatal encephalitis in a farmer in Brandenburg, northeast Germany, demonstrated BoDV-1 as causative agent by polymerase chain reaction, immunohistochemistry and in situ hybridization. Next-generation sequencing showed that the virus belonged to a cluster not known to be endemic in Brandenburg. The investigation was triggered by a recent outbreak of animal Borna disease in the region. Multiple possible exposures were identified. The next-of-kin were seronegative. CONCLUSIONS: The investigation highlights clinical awareness for human BoDV-1 encephalitis which should be extended to all areas endemic for animal Borna disease. All previously diagnosed human cases had occurred > 350 km further south. Further testing of shrews and livestock with Borna disease may show whether this BoDV-1 cluster is additionally endemic in the northwest of Brandenburg.
Assuntos
Doença de Borna , Vírus da Doença de Borna , Encefalite , Animais , Doença de Borna/epidemiologia , Vírus da Doença de Borna/genética , Alemanha/epidemiologia , Humanos , Estudos RetrospectivosRESUMO
The International Committee on Taxonomy of Viruses (ICTV) is tasked with classifying viruses into taxa (phyla to species) and devising taxon names. Virus names and virus name abbreviations are currently not within the ICTV's official remit and are not regulated by an official entity. Many scientists, medical/veterinary professionals, and regulatory agencies do not address evolutionary questions nor are they concerned with the hierarchical organization of the viral world, and therefore, have limited use for ICTV-devised taxa. Instead, these professionals look to the ICTV as an expert point source that provides the most current taxonomic affiliations of viruses of interests to facilitate document writing. These needs are currently unmet as an ICTV-supported, easily searchable database that includes all published virus names and abbreviations linked to their taxa is not available. In addition, in stark contrast to other biological taxonomic frameworks, virus taxonomy currently permits individual species to have several members. Consequently, confusion emerges among those who are not aware of the difference between taxa and viruses, and because certain well-known viruses cannot be located in ICTV publications or be linked to their species. In addition, the number of duplicate names and abbreviations has increased dramatically in the literature. To solve this conundrum, the ICTV could mandate listing all viruses of established species and all reported unclassified viruses in forthcoming online ICTV Reports and create a searchable webpage using this information. The International Union of Microbiology Societies could also consider changing the mandate of the ICTV to include the nomenclature of all viruses in addition to taxon considerations. With such a mandate expansion, official virus names and virus name abbreviations could be catalogued and virus nomenclature could be standardized. As a result, the ICTV would become an even more useful resource for all stakeholders in virology.
Assuntos
Classificação/métodos , Virologia/métodos , Vírus/classificação , Cooperação Internacional , Virologia/normas , Virologia/tendênciasRESUMO
Avian pathogens such as bornaviruses, circoviruses and polyomaviruses are widely distributed in captive collections of psittacine birds worldwide and can cause fatal diseases. In contrast, only little is known about their presence in free-ranging psittacines and their impact on these populations. Rose-ringed parakeets (Psittacula krameri) and Alexandrine parakeets (Psittacula eupatria) are non-native to Europe, but have established stable populations in parts of Western Europe. From 2012-2017, we surveyed free-ranging populations in Germany and France as well as captive Psittacula individuals from Germany and Spain for avian bornavirus, circovirus and polyomavirus infections. Samples from two out of 469 tested free-ranging birds (0.4%; 95% confidence interval [CI-95]: 0.1-1.5%) were positive for beak and feather disease virus (BeFDV), whereas avian bornaviruses and polyomaviruses were not detected in the free-ranging populations. In contrast, avian bornaviruses and polyomaviruses, but not circoviruses were detected in captive populations. Parrot bornavirus 4 (PaBV-4) infection was detected by RT-PCR in four out of 210 captive parakeets (1.9%; CI-95: 0.7-4.8%) from four different holdings in Germany and Spain and confirmed by detection of bornavirus-reactive antibodies in two of these birds. Three out of 160 tested birds (1.9%; CI-95: 0.5-5.4%) possessed serum antibodies directed against budgerigar fledgling disease virus (BuFDV). PaBV-4 and BuFDV were also detected in several psittacines of a mixed holding in Germany, which had been in contact with free-ranging parakeets. Our results demonstrate that Psittacula parakeets are susceptible to common psittacine pathogens and their populations in Western Europe are exposed to these viruses. Nevertheless, the prevalence of avian bornaviruses, circoviruses and polyomaviruses in those populations is very low.RESEARCH HIGHLIGHTS Psittacula parakeets are susceptible to bornavirus, circovirus and polyomavirus infection.Introduced Psittacula populations in Europe have been exposed to these viruses.Nevertheless, they may be absent or present at only low levels in free-ranging Psittacula populations.Free-ranging populations in Europe pose a minor threat of transmitting these viruses to captive Psittaciformes.
Assuntos
Doenças das Aves/virologia , Bornaviridae , Circovirus , Polyomavirus , Psittacula , Animais , Animais Selvagens , Doenças das Aves/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Europa (Continente)/epidemiologia , Humanos , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/veterinária , Infecções por Mononegavirales/virologia , Animais de Estimação , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/veterinária , Infecções por Polyomavirus/virologia , Vigilância da População , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/veterinária , Infecções Tumorais por Vírus/virologiaRESUMO
After many years of controversy, there is now recent and solid evidence that classical Borna disease virus 1 (BoDV-1) can infect humans. On the basis of six brain autopsies, we provide the first systematic overview on BoDV-1 tissue distribution and the lesion pattern in fatal BoDV-1-induced encephalitis. All brains revealed a non-purulent, lymphocytic sclerosing panencephalomyelitis with detection of BoDV-1-typical eosinophilic, spherical intranuclear Joest-Degen inclusion bodies. While the composition of histopathological changes was constant, the inflammatory distribution pattern varied interindividually, affecting predominantly the basal nuclei in two patients, hippocampus in one patient, whereas two patients showed a more diffuse distribution. By immunohistochemistry and RNA in situ hybridization, BoDV-1 was detected in all examined brain tissue samples. Furthermore, infection of the peripheral nervous system was observed. This study aims at raising awareness to human bornavirus encephalitis as differential diagnosis in lymphocytic sclerosing panencephalomyelitis. A higher attention to human BoDV-1 infection by health professionals may likely increase the detection of more cases and foster a clearer picture of the disease.
Assuntos
Doença de Borna/patologia , Vírus da Doença de Borna , Encéfalo/patologia , Encefalomielite/patologia , Adolescente , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Assuntos
Genoma Viral , Mononegavirais/classificação , Ordem dos Genes , Mononegavirais/genética , Filogenia , Especificidade da EspécieRESUMO
Avian bornaviruses are the causative agents of proventricular dilatation disease (PDD), a widely distributed and often fatal disease in captive psittacines. Because neither specific prevention measures nor therapies against PDD and bornavirus infections are currently available, new antiviral strategies are required to improve animal health. We show here that the nucleoside analogue ribavirin inhibited bornavirus activity in a polymerase reconstitution assay and reduced viral load in avian cell lines infected with two different parrot bornaviruses. Furthermore, we observed that ribavirin enhanced type I IFN signalling in avian cells. Combined treatment of avian bornavirus-infected cells with ribavirin and recombinant IFN-α strongly enhanced the antiviral efficiency compared to either drug alone. The combined use of ribavirin and type I IFN might represent a promising new strategy for therapeutic treatment of captive parrots persistently infected with avian bornaviruses.
Assuntos
Antivirais/farmacologia , Bornaviridae/efeitos dos fármacos , Interferon-alfa/farmacologia , Ribavirina/farmacologia , Animais , Linhagem Celular , Testes de Sensibilidade Microbiana , Papagaios , Carga ViralAssuntos
Doença de Borna/virologia , Vírus da Doença de Borna/genética , Encéfalo/virologia , Encefalite Viral/virologia , Transplantes/virologia , Idoso , Animais , Vírus da Doença de Borna/isolamento & purificação , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Evolução Fatal , Feminino , Humanos , Transplante de Rim , Transplante de Fígado , Imageamento por Ressonância Magnética , Masculino , Filogenia , RNA Viral/isolamento & purificação , Zoonoses/virologiaRESUMO
UNLABELLED: The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. IMPORTANCE: Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2/1968 virus from its putative human and avian precursors. We show that the avian PB1 segment increased activity of the viral polymerase and facilitated viral replication. Our results suggest that in addition to the acquisition of antigenically novel HA (i.e., antigenic shift), enhanced viral polymerase activity is required for the emergence of pandemic influenza viruses from their seasonal human precursors.
Assuntos
Surtos de Doenças/história , Vírus da Influenza A Subtipo H3N2 , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Proteínas Virais/genética , Zoonoses/epidemiologia , Zoonoses/transmissão , Animais , Sequência de Bases , Aves , Cães , Cobaias , Células HEK293 , História do Século XX , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Genética Reversa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas Virais/fisiologia , Zoonoses/virologiaAssuntos
Doenças das Aves/epidemiologia , Bornaviridae/isolamento & purificação , Infecções do Sistema Nervoso Central/epidemiologia , Infecções por Mononegavirales/complicações , Animais , Doenças das Aves/virologia , Infecções do Sistema Nervoso Central/virologia , Humanos , Infecções por Mononegavirales/virologia , PrevalênciaRESUMO
BACKGROUND: Rotavirus is one of the leading causes of childhood diarrhoea worldwide. The highest disease burden is seen in resource-constrained settings of sub-Saharan Africa. Recently, commercial multiplex PCR panels proved their accuracy to diagnose infectious gastroenteritis in Europe and the USA. However, data on their performance using samples from tropical regions in general and to detect rotavirus in particular remains scant. We aimed to analyse the diagnostic performance of the Luminex xTAG gastrointestinal pathogens panel, a multiplex PCR, to detect rotavirus in stool samples from Ghanaian children. METHODS: A total of 682 stool samples were collected in the Ashanti region of Ghana between 2007 and 2008. Of these, 341 were from cases (children with diarrhoea), and another 341 from controls (children without diarrhoea). All samples were analysed using the Luminex xTAG assay and compared to a rotavirus quantitative reverse-transcription PCR (reference assay). Rotavirus reference assay positive samples were P and G genotyped by sequencing the rotavirus VP4 and VP7 genes. RESULTS: Overall agreement between the Luminex xTAG and the reference assay was excellent (kappa 0.93). The sensitivity and specificity was 88.2 % (95 % confidence interval [CI] 78.2-94.1) and 100 % (95 % CI 99.2-100), respectively. Of 76 rotavirus reference assay positive samples, 64 were successfully genotyped and the Luminex xTAG assay was able to detect all rotavirus genotypes present in the study. CONCLUSION: The Luminex xTAG assay proved a sensitive and highly specific tool to detect rotavirus and may aid clinicians and public health authorities in the diagnosis and surveillance of rotavirus.
Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Diarreia/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Rotavirus/virologia , Rotavirus/isolamento & purificação , Bactérias/classificação , Infecções Bacterianas/diagnóstico , Criança , Pré-Escolar , Diarreia/diagnóstico , Diarreia/microbiologia , Fezes/microbiologia , Fezes/virologia , Feminino , Gana , Humanos , Lactente , Masculino , Rotavirus/classificação , Rotavirus/genética , Infecções por Rotavirus/diagnóstico , Sensibilidade e EspecificidadeRESUMO
Interferons (IFNs) are essential components of the antiviral defense system of vertebrates. In mammals, functional receptors for type III IFN (lambda interferon [IFN-λ]) are found mainly on epithelial cells, and IFN-λ was demonstrated to play a crucial role in limiting viral infections of mucosal surfaces. To determine whether IFN-λ plays a similar role in birds, we produced recombinant chicken IFN-λ (chIFN-λ) and we used the replication-competent retroviral RCAS vector system to generate mosaic-transgenic chicken embryos that constitutively express chIFN-λ. We could demonstrate that chIFN-λ markedly inhibited replication of various virus strains, including highly pathogenic influenza A viruses, in ovo and in vivo, as well as in epithelium-rich tissue and cell culture systems. In contrast, chicken fibroblasts responded poorly to chIFN-λ. When applied in vivo to 3-week-old chickens, recombinant chIFN-λ strongly induced the IFN-responsive Mx gene in epithelium-rich organs, such as lungs, tracheas, and intestinal tracts. Correspondingly, these organs were found to express high transcript levels of the putative chIFN-λ receptor alpha chain (chIL28RA) gene. Transfection of chicken fibroblasts with a chIL28RA expression construct rendered these cells responsive to chIFN-λ treatment, indicating that receptor expression determines cell type specificity of IFN-λ action in chickens. Surprisingly, mosaic-transgenic chickens perished soon after hatching, demonstrating a detrimental effect of constitutive chIFN-λ expression. Our data highlight fundamental similarities between the IFN-λ systems of mammals and birds and suggest that type III IFN might play a role in defending mucosal surfaces against viral intruders in most if not all vertebrates.