Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768887

RESUMO

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Assuntos
Evolução Biológica , Elementos Facilitadores Genéticos , Extremidades/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Serpentes/genética , Animais , Sequência de Bases , Evolução Molecular , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Mutação , Filogenia , Serpentes/classificação
2.
Cell ; 155(7): 1521-31, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360275

RESUMO

Enhancers are distal regulatory elements that can activate tissue-specific gene expression and are abundant throughout mammalian genomes. Although substantial progress has been made toward genome-wide annotation of mammalian enhancers, their temporal activity patterns and global contributions in the context of developmental in vivo processes remain poorly explored. Here we used epigenomic profiling for H3K27ac, a mark of active enhancers, coupled to transgenic mouse assays to examine the genome-wide utilization of enhancers in three different mouse tissues across seven developmental stages. The majority of the ∼90,000 enhancers identified exhibited tightly temporally restricted predicted activity windows and were associated with stage-specific biological functions and regulatory pathways in individual tissues. Comparative genomic analysis revealed that evolutionary conservation of enhancers decreases following midgestation across all tissues examined. The dynamic enhancer activities uncovered in this study illuminate rapid and pervasive temporal in vivo changes in enhancer usage that underlie processes central to development and disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Acetilação , Animais , Epigênese Genética , Evolução Molecular , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos
3.
Cell ; 152(4): 895-908, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23375746

RESUMO

The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders.


Assuntos
Elementos Facilitadores Genéticos , Telencéfalo/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Feto/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Telencéfalo/embriologia , Transcriptoma , Fatores de Transcrição de p300-CBP/metabolismo
4.
Nature ; 536(7617): 425-30, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27533034

RESUMO

Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome. Here we analysed over 5 Tb of metagenomic sequence data from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses. We discovered over 125,000 partial DNA viral genomes, including the largest phage yet identified, and increased the number of known viral genes by 16-fold. Half of the predicted partial viral genomes were clustered into genetically distinct groups, most of which included genes unrelated to those in known viruses. Using CRISPR spacers and transfer RNA matches to link viral groups to microbial host(s), we doubled the number of microbial phyla known to be infected by viruses, and identified viruses that can infect organisms from different phyla. Analysis of viral distribution across diverse ecosystems revealed strong habitat-type specificity for the vast majority of viruses, but also identified some cosmopolitan groups. Our results highlight an extensive global viral diversity and provide detailed insight into viral habitat distribution and host­virus interactions.


Assuntos
Planeta Terra , Ecossistema , Genoma Viral/genética , Metagenômica , Vírus/genética , Animais , Organismos Aquáticos/virologia , Bacteriófagos/genética , Biodiversidade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Viral/análise , DNA Viral/genética , Conjuntos de Dados como Assunto , Genes Virais , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Metagenoma/genética , Filogenia , Filogeografia , RNA de Transferência/genética , Análise de Sequência , Vírus/classificação , Vírus/isolamento & purificação
5.
Arch Virol ; 165(8): 1869-1875, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488616

RESUMO

Coronaviruses can become zoonotic, as in the case of COVID-19, and hunting, sale, and consumption of wild animals in Southeast Asia increases the risk for such incidents. We sampled and tested rodents (851) and other mammals and found betacoronavirus RNA in 12 rodents. The sequences belong to two separate genetic clusters and are closely related to those of known rodent coronaviruses detected in the region and distantly related to those of human coronaviruses OC43 and HKU1. Considering the close human-wildlife contact with many species in and beyond the region, a better understanding of virus diversity is urgently needed for the mitigation of future risks.


Assuntos
Animais Selvagens/virologia , Betacoronavirus/genética , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , RNA Viral/genética , Roedores/virologia , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Quirópteros/virologia , Coronavirus Humano OC43/genética , Humanos , Laos/epidemiologia , RNA Viral/isolamento & purificação , SARS-CoV-2
6.
Arch Virol ; 164(9): 2359-2366, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31240484

RESUMO

Rodent adenoviruses are important models for human disease. In contrast to the over 70 adenovirus types isolated from humans, few rodent adenoviruses are known, despite the vast diversity of rodent species. PCR and Sanger sequencing were used to investigate adenovirus diversity in wild rodents and shrews in Cameroon. Adenovirus DNA was detected in 13.8% of animals (n = 218). All detected sequences differ from known adenovirus types by more than 10% at the amino acid level, thus indicating up to 14 novel adenovirus species. These results highlight the diversity of rodent adenoviruses, their phylogeny, and opportunities for studying alternative adenovirus rodent models.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/isolamento & purificação , DNA Viral/genética , Variação Genética , Doenças dos Roedores/virologia , Musaranhos/virologia , Adenoviridae/classificação , Adenoviridae/genética , Infecções por Adenoviridae/virologia , Animais , Camarões , Filogenia , Roedores/virologia
7.
Nature ; 499(7459): 431-7, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23851394

RESUMO

Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Metagenômica , Filogenia , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ecossistema , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Célula Única
8.
Nucleic Acids Res ; 45(5): 2776-2785, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28076288

RESUMO

We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter T-stem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncoding RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species in Escherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.


Assuntos
RNA Bacteriano/química , RNA de Transferência/química , Anticódon , Bactérias/genética , Toxinas Bacterianas/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/metabolismo
9.
PLoS Genet ; 12(2): e1005854, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26870957

RESUMO

DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.


Assuntos
Epigenômica , Células Procarióticas/metabolismo , Sequência Conservada , Metilação de DNA/genética , Replicação do DNA/genética , Enzimas de Restrição-Modificação do DNA/classificação , Enzimas de Restrição-Modificação do DNA/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Genoma , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Motivos de Nucleotídeos/genética , Filogenia , Especificidade por Substrato
10.
J Gen Virol ; 99(5): 676-681, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29583115

RESUMO

Bocaparvoviruses are members of the family Parvovirinae and human bocaviruses have been found to be associated with respiratory and gastrointestinal disease. There are four known human bocaviruses, as well as several distinct ones in great apes. The goal of the presented study was to detect other non-human primate (NHP) bocaviruses in NHP species in the Democratic Republic of the Congo using conventional broad-range PCR. We found bocavirus DNA in blood and tissues samples in 6 out of 620 NHPs, and all isolates showed very high identity (>97 %) with human bocaviruses 2 or 3. These findings suggest cross-species transmission of bocaviruses between humans and NHPs.


Assuntos
DNA Viral/isolamento & purificação , Bocavirus Humano/genética , Infecções por Parvoviridae/veterinária , Primatas/virologia , Animais , DNA Viral/sangue , República Democrática do Congo , Genoma Viral , Filogenia , Reação em Cadeia da Polimerase
11.
Intervirology ; 61(4): 155-165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30448834

RESUMO

OBJECTIVE: Herpesviruses belong to a diverse order of large DNA viruses that can cause diseases in humans and animals. With the goal of gathering information about the distribution and diversity of herpesviruses in wild rodent and shrew species in central Africa, animals in Cameroon and the Democratic Republic of the Congo were sampled and tested by PCR for the presence of herpesvirus DNA. METHODS: A broad range PCRs targeting either the Polymerase or the terminase gene were used for virus detection. Amplified products from PCR were sequenced and isolates analysed for phylogenetic placement. RESULTS: Overall, samples of 1,004 animals of various rodent and shrew species were tested and 24 were found to be positive for herpesvirus DNA. Six of these samples contained strains of known viruses, while the other positive samples revealed DNA sequences putatively belonging to 11 previously undescribed herpesviruses. The new isolates are beta- and gammaherpesviruses and the shrew isolates appear to form a separate cluster within the Betaherpesvirinae subfamily. CONCLUSION: The diversity of viruses detected is higher than in similar studies in Europe and Asia. The high diversity of rodent and shrew species occurring in central Africa may be the reason for a higher diversity in herpesviruses in this area.


Assuntos
DNA Viral/análise , Variação Genética , Herpesviridae/classificação , Herpesviridae/isolamento & purificação , Roedores/virologia , Musaranhos/virologia , Animais , Ásia , Camarões , DNA Viral/genética , República Democrática do Congo , Herpesviridae/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
12.
Environ Sci Technol ; 52(8): 4996-5004, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29589925

RESUMO

This study develops an integrated technical and economic modeling framework to investigate the feasibility of ionic liquids (ILs) for precombustion carbon capture. The IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is modeled as a potential physical solvent for CO2 capture at integrated gasification combined cycle (IGCC) power plants. The analysis reveals that the energy penalty of the IL-based capture system comes mainly from the process and product streams compression and solvent pumping, while the major capital cost components are the compressors and absorbers. On the basis of the plant-level analysis, the cost of CO2 avoided by the IL-based capture and storage system is estimated to be $63 per tonne of CO2. Technical and economic comparisons between IL- and Selexol-based capture systems at the plant level show that an IL-based system could be a feasible option for CO2 capture. Improving the CO2 solubility of ILs can simplify the capture process configuration and lower the process energy and cost penalties to further enhance the viability of this technology.


Assuntos
Líquidos Iônicos , Carbono , Dióxido de Carbono , Centrais Elétricas , Análise de Sistemas
14.
Proc Natl Acad Sci U S A ; 112(50): E6889-97, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26598656

RESUMO

Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Cavalos/fisiologia , Animais , Regiões Árticas , Evolução Molecular , Genoma , Cavalos/genética , Sibéria
15.
Genome Res ; 24(9): 1517-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907284

RESUMO

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.


Assuntos
Proteínas Arqueais/genética , Metagenoma , Metano/biossíntese , Microbiota , Rúmen/microbiologia , Ovinos/microbiologia , Animais , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Fenótipo , Característica Quantitativa Herdável , Rúmen/metabolismo , Ovinos/metabolismo , Transcriptoma
16.
Genome Res ; 24(6): 920-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24752179

RESUMO

The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.


Assuntos
DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Helicases/genética , Extremidades/embriologia , Genoma , Coração/embriologia , Histonas/genética , Histonas/metabolismo , Camundongos , Miocárdio/metabolismo , Proteínas Nucleares/genética , Especificidade de Órgãos , Ligação Proteica , Fatores de Transcrição/genética
17.
Genome Res ; 24(3): 454-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24299735

RESUMO

Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.


Assuntos
Citosina/metabolismo , Metilação de DNA , Genoma Humano , Inuíte/genética , Nucleossomos/genética , Animais , Mapeamento Cromossômico , Epigênese Genética , Epigenômica , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Filogenia , Regiões Promotoras Genéticas , Análise de Sequência de DNA
19.
Nature ; 480(7377): 368-71, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056985

RESUMO

Permafrost contains an estimated 1672 Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 °C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Congelamento , Metagenoma/genética , Metagenômica , Microbiologia do Solo , Temperatura , Alaska , Regiões Árticas , Bactérias/isolamento & purificação , Carbono/metabolismo , Ciclo do Carbono/genética , DNA/análise , DNA/genética , Genes de RNAr/genética , Metano/metabolismo , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Fatores de Tempo
20.
PLoS Genet ; 10(9): e1004610, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188404

RESUMO

Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs) within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs) displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , RNA não Traduzido/genética , Animais , Perfilação da Expressão Gênica , Genômica/métodos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA