RESUMO
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Assuntos
Interferons , Transdução de Sinais , Morte Celular , Citocinas , Humanos , Imunidade Inata , InflamaçãoRESUMO
BACKGROUND & AIMS: Interferon lambda (IFNL) is expressed at high levels by intestinal epithelial cells (IECs) and mucosal immune cells in response to infection and inflammation. We investigated whether IFNL might contribute to pathogenesis of Crohn's disease (CD). METHODS: We obtained serum samples and terminal ileum biopsies from 47 patients with CD and 16 healthy individuals (controls). We measured levels of IFNL by enzyme-linked immunosorbent assay and immunohistochemistry and location of expression by confocal microscopy. Activation of IFNL signaling via STAT1 was measured in areas of no, mild, moderate, and severe inflammation and correlated with Paneth cell homeostasis and inflammation. IFNL expression and function were studied in wild-type mice and mice with intestinal epithelial cell-specific (ΔIEC) disruption or full-body disruption of specific genes (Mlkl-/-, Stat1ΔIEC, Casp8ΔIEC, Casp8ΔIECRipk3-/-, Casp8ΔIECTnfr-/-, Casp8ΔIECMlkl-/-, and Nod2-/- mice). Some mice were given tail vein injections of a vector encoding a secreted form of IFNL. Intestinal tissues were collected from mice and analyzed by immunohistochemistry and immunoblots. We generated 3-dimensional small intestinal organoids from mice and studied the effects of IFNL and inhibitors of STAT-signaling pathway. RESULTS: Patients with CD had significant increases in serum and ileal levels of IFNL compared with controls. Levels of IFNL were highest in ileum tissues with severe inflammation. High levels of IFNL associated with a reduced number of Paneth cells and increased cell death at the crypt bottom in inflamed ileum samples. Intestinal tissues from the ileum of wild-type mice injected with a vector expressing IFNL had reduced numbers of Paneth cells. IFNL-induced death of Paneth cells in mice did not occur via apoptosis, but required Mixed Lineage Kinase Domain Like (MLKL) and activation of Signal transducer and activator of transcription 1 (STAT1). In organoids, inhibitors of Janus kinase (JAK) signaling via STAT1 (glucocorticoids, tofacitinib, or filgotinib) reduced expression of proteins that mediate cell death and prevented Paneth cell death. CONCLUSIONS: Levels of IFNL are increased in serum and inflamed ileal tissues from patients with CD and associated with a loss of Paneth cells. Expression of a secreted form of IFNL in mice results in loss of Paneth cells from intestinal tissues, via STAT1 and MLKL, controlled by caspase 8. Strategies to reduce IFNL or block its effects might be developed for treatment of patients with CD affecting the terminal ileum.
Assuntos
Doença de Crohn/metabolismo , Íleo/metabolismo , Interferons/metabolismo , Interleucinas/metabolismo , Celulas de Paneth/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Doença de Crohn/imunologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Humanos , Íleo/imunologia , Íleo/patologia , Interferons/genética , Interleucinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Celulas de Paneth/imunologia , Celulas de Paneth/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos , Regulação para CimaRESUMO
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Assuntos
Gastroenteropatias/imunologia , Homeostase , Intestinos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/imunologia , Infecções Bacterianas/patologia , Descoberta de Drogas , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/patologia , Homeostase/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Viroses/tratamento farmacológico , Viroses/imunologia , Viroses/patologiaAssuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , Doença de Crohn/enzimologia , Microbioma Gastrointestinal , Íleo/enzimologia , Mediadores da Inflamação/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/enzimologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/virologia , Estudos de Casos e Controles , Colite Ulcerativa/enzimologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Modelos Animais de Doenças , Regulação para Baixo , Interações Hospedeiro-Patógeno , Humanos , Íleo/imunologia , Íleo/microbiologia , Camundongos Knockout , SARS-CoV-2/patogenicidade , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismoAssuntos
Neoplasias do Colo/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Imageamento Tridimensional/métodos , Microscopia/métodos , Processamento de Linguagem Natural , Algoritmos , Animais , Biologia Computacional/métodos , Camundongos , Movimento (Física) , Linguagens de Programação , Reprodutibilidade dos Testes , Rotação , SoftwareRESUMO
Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.
Assuntos
Colite/metabolismo , Colo/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Necroptose , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células HT29 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/efeitos dos fármacos , Organoides , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de SinaisRESUMO
Macrophages are part of the innate immunity and are key players for the maintenance of intestinal homeostasis. They belong to the group of mononuclear phagocytes, which exert bactericidal functions and help to clear apoptotic cells. Moreover, they play essential roles for the maintenance of epithelial integrity and tissue remodeling during wound healing processes and might be implicated in intestinal tumor development. Macrophages are antigen-presenting cells and secrete immune-modulatory factors, like chemokines and cytokines, which are necessary to activate other intestinal immune cells and therefore to shape immune responses in the gut. However, overwhelming activation or increased secretion of pro-inflammatory cytokines might also contribute to the pathogenesis of inflammatory bowel disease. Presently, intestinal macrophages are in the center of intense studies, which might help to develop new therapeutic strategies to counteract the development or treat already existing inflammatory diseases in the gut. In this review, we focus on the origin of intestinal macrophages and, based on current knowledge, discuss their role in the gut during homeostasis and inflammation, as well as during intestinal wound healing and tumor development.
Assuntos
Mucosa Intestinal/patologia , Macrófagos/patologia , Animais , Homeostase , Humanos , Inflamação/patologia , Neoplasias Intestinais/patologia , CicatrizaçãoRESUMO
Organoids and three-dimensional (3D) cell cultures allow the investigation of complex biological mechanisms and regulations in vitro, which previously was not possible in classical cell culture monolayers. Moreover, monolayer cell cultures are good in vitro model systems but do not represent the complex cellular differentiation processes and functions that rely on 3D structure. This has so far only been possible in animal experiments, which are laborious, time consuming, and hard to assess by optical techniques. Here we describe an assay to quantitatively determine the barrier integrity over time in living small intestinal mouse organoids. To validate our model, we applied interferon gamma (IFN-γ) as a positive control for barrier destruction and organoids derived from IFN-γ receptor 2 knock out mice as a negative control. The assay allowed us to determine the impact of IFN-γ on the intestinal barrier integrity and the IFN-γ induced degradation of the tight junction proteins claudin-2, -7, and -15. This assay could also be used to investigate the impact of chemical compounds, proteins, toxins, bacteria, or patient-derived probes on the intestinal barrier integrity.
Assuntos
Intestinos/fisiologia , Organoides/fisiologia , Animais , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Modelos Biológicos , PermeabilidadeRESUMO
A strict cell death control in the intestinal epithelium is indispensable to maintain barrier integrity and homeostasis. In order to achieve a balance between cell proliferation and cell death, a tight regulation of Caspase-8, which is a key player in controlling apoptosis, is required. Caspase-8 activity is regulated by cellular FLIP proteins. These proteins are expressed in different isoforms (cFLIPlong and cFLIPshort) which determine cell death and survival. Interestingly, several viruses encode FLIP proteins, homologous to cFLIPshort, which are described to regulate Caspase-8 and the host cell death machinery. In the current study a mouse model was generated to show the impact of viral FLIP (vFLIP) from Kaposi's Sarcoma-associated Herpesvirus (KSHV)/ Human Herpesvirus-8 (HHV-8) on cell death regulation in the gut. Our results demonstrate that expression of vFlip in intestinal epithelial cells suppressed cFlip expression, but protected mice from lethality, tissue damage and excessive apoptotic cell death induced by genetic cFlip deletion. Finally, our model shows that vFlip expression decreases cFlip mediated Caspase-8 activation in intestinal epithelial cells. In conclusion, our data suggests that viral FLIP neutralizes and compensates for cellular FLIP, efficiently counteracting host cell death induction and facilitating further propagation in the host organism.
Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Herpesvirus Humano 8/metabolismo , Mucosa Intestinal/citologia , Animais , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proliferação de Células , Deleção de Genes , Herpesvirus Humano 8/genética , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Modelos Animais , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Crohn's disease (CD) patients can be grouped into patients suffering from ileitis, ileocolitis, jejunoileitis, and colitis. The pathophysiological mechanism underlying this regional inflammation is still unknown. Although most murine models of inflammatory bowel disease (IBD) develop inflammation in the colon, there is an unmet need for novel models that recapitulate the spontaneous and fluctuating nature of inflammation as seen in CD. Recently, mice with an intestinal epithelial cell-specific deletion for Caspase-8 (Casp8ΔIEC mice), which are characterized by cell death-driven ileitis and disrupted Paneth cell homeostasis, have been identified as a novel model of CD-like ileitis. Here we uncovered that genetic susceptibility alone is sufficient to drive ileitis in Casp8ΔIEC mice. In sharp contrast, environmental factors, such as a disease-relevant microbial flora, determine colonic inflammation. Accordingly, depending on the microbial environment, isogenic Casp8ΔIEC mice either exclusively developed ileitis or suffered from pathologies in several parts of the gastrointestinal tract. Colitis in these mice was characterized by massive epithelial cell death, leading to spread of commensal gut microbes to the extra-intestinal space and hence an aberrant activation of the systemic immunity. We further uncovered that Casp8ΔIEC mice show qualitative and quantitative changes in the intestinal microbiome associated with an altered mucosal and systemic immune response. In summary, we identified that inflammation in this murine model of CD-like inflammation is characterized by an immune reaction, presumably directed against a disease-relevant microbiota in a genetically susceptible host, with impaired mucosal barrier function and bacterial clearance at the epithelial interface.
Assuntos
Doença de Crohn/microbiologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Ileíte/microbiologia , Mucosa Intestinal/microbiologia , Animais , Caspase 8 , Doença de Crohn/genética , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Ileíte/genética , Inflamação , Mucosa Intestinal/imunologia , CamundongosRESUMO
The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.
Assuntos
Doença de Crohn/metabolismo , Gorduras na Dieta/efeitos adversos , Enterite/metabolismo , Ácidos Graxos Insaturados/metabolismo , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Adulto , Animais , Morte Celular/genética , Morte Celular/fisiologia , Doença de Crohn/genética , Enterite/etiologia , Enterite/genética , Ácidos Graxos Insaturados/genética , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/genética , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genéticaRESUMO
The aberrant regulation of the epithelial barrier integrity is involved in many diseases of the digestive tract, including inflammatory bowel diseases and colorectal cancer. Intestinal epithelial cell organoid cultures provide new perspectives for analyses of the intestinal barrier in vitro. However, established methods of barrier function analyses from two dimensional cultures have to be adjusted to the analysis of three dimensional organoid structures. Here we describe the methodology for analysis of epithelial barrier function and molecular regulation in intestinal organoids. Barrier responses to interferon-γ of intestinal organoids with and without epithelial cell-specific deletion of the interferon-γ-receptor 2 gene were used as a model system. The established method allowed monitoring of the kinetics of interferon-γ-induced permeability changes in living organoids. Proteolytic degradation and altered localization of the tight junction proteins claudin-2, -7, andâ¯-â¯15 was detected using confocal spinning disc microscopy with 3D reconstruction. Hessian analysis was used for quantification of re-localization of claudins. In summary, we provide a novel methodologic approach for quantitative analyses of intestinal epithelial barrier functions in the 3D organoid model.
Assuntos
Células Epiteliais/metabolismo , Imageamento Tridimensional , Interferon gama/farmacologia , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Animais , Técnicas de Cultura de Células , Claudinas/metabolismo , Células Epiteliais/citologia , Mucosa Intestinal/citologia , Camundongos , Organoides/citologia , Permeabilidade/efeitos dos fármacosRESUMO
Although induction of host cell death is a pivotal step during bacteria-induced gastroenteritis, the molecular regulation remains to be fully characterized. To expand our knowledge, we investigated the role of the central cell death regulator Caspase-8 in response to Salmonella Typhimurium. Here, we uncovered that intestinal salmonellosis was associated with strong upregulation of members of the host cell death machinery in intestinal epithelial cells (IECs) as an early event, suggesting that elimination of infected IECs represents a host defense strategy. Indeed, Casp8∆IEC mice displayed severe tissue damage and high lethality after infection. Additional deletion of Ripk3 or Mlkl rescued epithelial cell death and lethality of Casp8∆IEC mice, demonstrating the crucial role of Caspase-8 as a negative regulator of necroptosis. While Casp8∆IECTnfr1-/- mice showed improved survival after infection, tissue destruction was similar to Casp8∆IEC mice, indicating that necroptosis partially depends on TNF-α signaling. Although there was no impairment in antimicrobial peptide secretion during the early phase of infection, functional Caspase-8 seems to be required to control pathogen colonization. Collectively, these results demonstrate that Caspase-8 is essential to prevent Salmonella Typhimurium induced enteritis and to ensure host survival by two different mechanisms: maintenance of intestinal barrier function and restriction of pathogen colonization.
Assuntos
Caspase 8/metabolismo , Enterite/imunologia , Mucosa Intestinal/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia , Animais , Apoptose , Caspase 8/genética , Imunidade Inata , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlipIEC-tg mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vFlip expression altered classical and alternative NFκB activation. Blocking of alternative NFκB signaling by deletion of Ikka in vivo largely protected mice from inflammation and Paneth cell loss induced by vFLIP. Collectively, our data provide functional evidence that expression of a single viral protein in IECs can be sufficient to disrupt epithelial homeostasis and to initiate chronic intestinal inflammation.
Assuntos
Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Doenças Inflamatórias Intestinais/virologia , Intestinos/virologia , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Enterócitos/patologia , Enterócitos/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 8/genética , Homeostase , Humanos , Quinase I-kappa B/genética , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , NecroseRESUMO
The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17ex/ex) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17ex/ex/RIPK3-/- mice showed the same increased susceptibility as ADAM17ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis.