Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Rep ; 41(3): 402-433, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38105714

RESUMO

Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.


Assuntos
Produtos Biológicos , Sesquiterpenos , Terpenos/química , Ciclização
2.
Chembiochem ; : e202400398, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030818

RESUMO

Marine-derived fungi have emerged as a source for novel metabolites with a broad range of bioactivities. However, accessing the full potential of fungi under standard laboratory conditions remains challenging. LC-MS-based metabolomics in combination with varied culture conditions is a fast and powerful tool to detect new metabolites. Here, three developmental forms of the marine-derived fungus Aspergillus alliaceus were analyzed and 14 fungal metabolites, including new brominated polyketides (11-14) were isolated. Structure elucidation relied mainly on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry and DFT-based computations. We sequenced the A. alliaceus genome, identified the bianthrone-producing biosynthetic gene cluster, and conducted expression analysis on genes involved in sexual development and biosynthesis. The NCI-60 cell line panel revealed selective in vitro activity against triple-negative breast cancer (TNBC) for the halogenated allianthrones and their full anti-proliferative and cytotoxic effects were evaluated in five TNBC cell lines.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38262768

RESUMO

The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery. ONE-SENTENCE SUMMARY: Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.


Assuntos
Adamantano , Aminobenzoatos , Aminofenóis , Anilidas , Produtos Biológicos , Diterpenos , Compostos Policíclicos , Streptomyces , Fermentação , Vias Biossintéticas , Diterpenos/metabolismo
4.
Beilstein J Org Chem ; 20: 1320-1326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887579

RESUMO

Eunicellane diterpenoids are a unique family of natural products containing a foundational 6/10-bicyclic framework and can be divided into two main classes, cis and trans, based on the configurations of their ring fusion at C1 and C10. Previous studies on two bacterial diterpene synthases, Bnd4 and AlbS, revealed that these enzymes form cis- and trans-eunicellane skeletons, respectively. Although the structures of these diterpenes only differed in their configuration at a single position, C1, they displayed distinct chemical and thermal reactivities. Here, we used a combination of quantum chemical calculations and chemical transformations to probe their intrinsic properties, which result in protonation-initiated cyclization, Cope rearrangement, and atropisomerism. Finally, we exploited the reactivity of the trans-eunicellane skeleton to generate a series of 6/6/6 gersemiane-type diterpenes via electrophilic cyclization.

5.
Methods Enzymol ; 699: 395-417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942512

RESUMO

Expression and purification of membrane-bound proteins remains a challenge and limits enzymology efforts, contributing to a substantial knowledge gap in the biochemical functions of many proteins found in nature. Accordingly, the study of bacterial UbiA terpene synthases (TSs) has been limited due to the experimental hurdles required to purify active enzymes for characterization in vitro. Previous work employed the use of microsomes or crude membrane fractions to test enzyme activity; however, these methods can be labor intensive, require access to an ultracentrifuge, or may not be suitable for all membrane-bound TSs. We detail here an alternative strategy for the in vivo expression and biochemical characterization of the membrane associated UbiA TSs by employing a precursor overproduction system in Escherichia coli.


Assuntos
Alquil e Aril Transferases , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
6.
RSC Chem Biol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39144403

RESUMO

The chemical logic associated with assembly of many bacterial terpenoids remains poorly understood. We focused our efforts on the early-stage biosynthesis of the phenalinolactone diterpenoids, demonstrating that the anti/anti/syn-perhydrophenanthrene core is constructed by sequential prenylation, epoxidation, and cyclization. The functions and timing of PlaT1-PlaT3 were assigned by comprehensive heterologous reconstitution. We illustrated that the UbiA prenyltransferase PlaT3 acts on geranylgeranyl diphosphate (GGPP) in the first step of phenalinolactone biosynthesis, prior to epoxidation by the flavin-dependent monooxygenase PlaT1 and cyclization by the type II terpene cyclase PlaT2. Finally, we isolated eight new-to-nature terpenoids, expanding the scope of the bacterial terpenome. The biosynthetic strategy employed in the assembly of the phenalinolactone core, with cyclization occurring after prenylation, is rare in bacteria and resembles fungal meroterpenoid biosynthesis. The findings presented here set the stage for future discovery, engineering, and enzymology efforts in bacterial meroterpenoids.

7.
ACS Cent Sci ; 10(3): 511-513, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559289
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA