Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207209

RESUMO

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Interleucina/biossíntese , Animais , Biomarcadores , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunofenotipagem , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Transgênicos , RNA Citoplasmático Pequeno/genética , Receptores de Interleucina/genética , Transdução de Sinais
2.
Nat Immunol ; 15(12): 1181-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25306126

RESUMO

Advances in cell-fate mapping have revealed the complexity in phenotype, ontogeny and tissue distribution of the mammalian myeloid system. To capture this phenotypic diversity, we developed a 38-antibody panel for mass cytometry and used dimensionality reduction with machine learning-aided cluster analysis to build a composite of murine (mouse) myeloid cells in the steady state across lymphoid and nonlymphoid tissues. In addition to identifying all previously described myeloid populations, higher-order analysis allowed objective delineation of otherwise ambiguous subsets, including monocyte-macrophage intermediates and an array of granulocyte variants. Using mice that cannot sense granulocyte macrophage-colony stimulating factor GM-CSF (Csf2rb(-/-)), which have discrete alterations in myeloid development, we confirmed differences in barrier tissue dendritic cells, lung macrophages and eosinophils. The methodology further identified variations in the monocyte and innate lymphoid cell compartment that were unexpected, which confirmed that this approach is a powerful tool for unambiguous and unbiased characterization of the myeloid system.


Assuntos
Citometria de Fluxo/métodos , Células Mieloides/citologia , Animais , Inteligência Artificial , Análise por Conglomerados , Camundongos , Camundongos Endogâmicos C57BL
3.
Proc Natl Acad Sci U S A ; 120(8): e2209177120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787364

RESUMO

Microglial phagocytosis is an energetically demanding process that plays a critical role in the removal of toxic protein aggregates in Alzheimer's disease (AD). Recent evidence indicates that a switch in energy production from mitochondrial respiration to glycolysis disrupts this important protective microglial function and may provide therapeutic targets for AD. Here, we demonstrate that the translocator protein (TSPO) and a member of its mitochondrial complex, hexokinase-2 (HK), play critical roles in microglial respiratory-glycolytic metabolism and phagocytosis. Pharmacological and genetic loss-of-function experiments showed that TSPO is critical for microglial respiratory metabolism and energy supply for phagocytosis, and its expression is enriched in phagocytic microglia of AD mice. Meanwhile, HK controlled glycolytic metabolism and phagocytosis via mitochondrial binding or displacement. In cultured microglia, TSPO deletion impaired mitochondrial respiration and increased mitochondrial recruitment of HK, inducing a switch to glycolysis and reducing phagocytosis. To determine the functional significance of mitochondrial HK recruitment, we developed an optogenetic tool for reversible control of HK localization. Displacement of mitochondrial HK inhibited glycolysis and improved phagocytosis in TSPO-knockout microglia. Mitochondrial HK recruitment also coordinated the inflammatory switch to glycolysis that occurs in response to lipopolysaccharide in normal microglia. Interestingly, cytosolic HK increased phagocytosis independent of its metabolic activity, indicating an immune signaling function. Alzheimer's beta amyloid drastically stimulated mitochondrial HK recruitment in cultured microglia, which may contribute to microglial dysfunction in AD. Thus, targeting mitochondrial HK may offer an immunotherapeutic approach to promote phagocytic microglial function in AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Microglia/metabolismo , Fagocitose , Mitocôndrias/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(23): e2204557119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653568

RESUMO

C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile.


Assuntos
Eosinófilos , Receptores de Hidrocarboneto Arílico , Receptores de Superfície Celular , Eosinofilia/terapia , Hipersensibilidade Alimentar/terapia , Imunomodulação , Intestino Delgado , Contagem de Leucócitos , Ligantes , Receptores de Hidrocarboneto Arílico/genética
5.
Immunity ; 43(2): 382-93, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26287683

RESUMO

Macrophages are one of the most diverse cell populations in terms of their anatomical location and functional specialization during both homeostasis and disease. Although it has been shown in different fate mapping models that some macrophages present in adult tissues are already established during fetal development, their exact origins are still under debate. In the current study, we developed a fate mapping strain, based on the Kit locus, which allowed us to readdress "the origins" question. Different types of macrophages from various adult tissues were traced to their fetal or adult sources by inducing labeling in precursors at several time points either during fetal development or in adult mice. We show that all adult macrophages, resident or infiltrating, are progenies of classical hematopoietic stem cells (HSC) with the exception of microglia and, partially epidermal Langerhans cells, which are yolk sac (YS)-derived.


Assuntos
Desenvolvimento Fetal/imunologia , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/fisiologia , Microglia/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas Proto-Oncogênicas c-kit/genética , Saco Vitelino/fisiologia
6.
EMBO Rep ; 22(8): e52835, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34196465

RESUMO

Tissue-resident macrophages in white adipose tissue (WAT) dynamically adapt to the metabolic changes of their microenvironment that are often induced by excess energy intake. Currently, the exact contribution of these macrophages in obesity-driven WAT remodeling remains controversial. Here, using a transgenic CD169-DTR mouse strain, we provide new insights into the interplay between CD169+ adipose tissue macrophages (ATMs) and their surrounding WAT microenvironment. Using targeted in vivo ATM ablation followed by transcriptional and metabolic WAT profiling, we found that ATMs protect WAT from the excessive pathological remodeling that occurs during obesity. As obesity progresses, ATMs control not only vascular integrity, adipocyte function, and lipid and metabolic derangements but also extracellular matrix accumulation and resultant fibrosis in the WAT. The protective role of ATMs during obesity-driven WAT dysfunction supports the notion that ATMs represent friends, rather than foes, as has previously assumed.


Assuntos
Tecido Adiposo , Macrófagos , Tecido Adiposo Branco , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
7.
J Immunol ; 202(9): 2535-2545, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858199

RESUMO

Naive CD4+ T lymphocytes differentiate into various Th cell subsets following TCR binding to microbial peptide:MHC class II (p:MHCII) complexes on dendritic cells (DCs). The affinity of the TCR interaction with p:MHCII plays a role in Th differentiation by mechanisms that are not completely understood. We found that low-affinity TCRs biased mouse naive T cells to become T follicular helper (Tfh) cells, whereas higher-affinity TCRs promoted the formation of Th1 or Th17 cells. We explored the basis for this phenomenon by focusing on IL-2R signaling, which is known to promote Th1 and suppress Tfh cell differentiation. SIRP⍺+ DCs produce abundant p:MHCII complexes and consume IL-2, whereas XCR1+ DCs weakly produce p:MHCII but do not consume IL-2. We found no evidence, however, of preferential interactions between Th1 cell-prone, high-affinity T cells and XCR1+ DCs or Tfh cell-prone, low-affinity T cells and SIRP⍺+ DCs postinfection with bacteria expressing the peptide of interest. Rather, high-affinity T cells sustained IL-2R expression longer and expressed two novel Th cell differentiation regulators, Eef1e1 and Gbp2, to a higher level than low-affinity T cells. These results suggest that TCR affinity does not influence Th cell differentiation by biasing T cell interactions with IL-2-consuming DCs, but instead, directly regulates genes in naive T cells that control the differentiation process.


Assuntos
Diferenciação Celular/imunologia , Proteínas de Ligação ao GTP/imunologia , Regulação da Expressão Gênica/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Fatores de Alongamento de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular/genética , Células Dendríticas/citologia , Células Dendríticas/imunologia , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/genética , Subunidade alfa de Receptor de Interleucina-2/genética , Camundongos , Camundongos Knockout , Fatores de Alongamento de Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th1/citologia , Células Th2/citologia
8.
J Immunol ; 200(8): 2978-2986, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507107

RESUMO

In the steady state, tumors harbor several populations of dendritic cells (DCs) and myeloid cells that are key regulators of the intratumoral immune environment. Among these cells, migratory CD103+ cross-presenting DCs are thought to be critical for tumor-specific CTL responses and tumor resistance. However, it is unclear whether this prominent role also extends to immunotherapy. We used a murine orthotopic mammary tumor model, as well as Clec9A-diphtheria toxin receptor mice that can be depleted of the specialized cross-presenting CD8α+ and CD103+ DC1 subsets, to investigate the role of these DCs in immunotherapy. Treatment with monosodium urate crystals and mycobacteria at the tumor site delayed tumor growth and required DC1s for efficacy. In contrast, treatment with poly I:C was equally effective regardless of DC1 depletion. Neither treatment affected myeloid-derived suppressor cell numbers in the spleen or tumor. Similar experiments using subcutaneous B16 melanoma tumors in BATF3-knockout mice confirmed that CD103+ DCs were not necessary for successful poly I:C immunotherapy. Nevertheless, adaptive immune responses were essential for the response to poly I:C, because mice depleted of CD8+ T cells or all DC subsets were unable to delay tumor growth. In vivo experiments showed that DC1 and DC2 subsets were able to take up tumor Ags, with DC2s making up the larger proportion of lymph node DCs carrying tumor material. Both DC subsets were able to cross-present OVA to OT-I T cells in vitro. Thus, immunotherapy with poly I:C enables multiple DC subsets to cross-present tumor Ag for effective antitumor immune responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Indutores de Interferon/imunologia , Neoplasias Mamárias Experimentais/imunologia , Melanoma Experimental/imunologia , Poli I-C/imunologia , Animais , Apresentação Cruzada/imunologia , Feminino , Imunoterapia/métodos , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Imunológicos/imunologia
9.
Am J Physiol Endocrinol Metab ; 317(6): E1108-E1120, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573842

RESUMO

ß-Cells respond to peripheral insulin resistance by first increasing circulating insulin during diabetes. Islet remodeling supports this compensation, but its drivers remain poorly understood. Infiltrating macrophages have been implicated in late-stage type 2 diabetes, but relatively little is known on islet resident macrophages, especially during compensatory hyperinsulinemia. We hypothesized that islet resident macrophages would contribute to islet vascular remodeling and hyperinsulinemia during diabetes, the failure of which results in a rapid progression to frank diabetes. We used chemical (clodronate), genetics (CD169-diphtheria toxin receptor mice), or antibody-mediated (colony-stimulating factor 1 receptor α) macrophage ablation methods in diabetic (db/db) and diet-induced models of compensatory hyperinsulinemia to investigate the role of macrophages in islet remodeling. We transplanted islets devoid of macrophages into naïve diabetic mice and assessed the impact on islet vascularization. With the use of the above methods, we showed that macrophage depletion significantly and consistently compromised islet remodeling in terms of size, vascular density, and insulin secretion capacity. Depletion of islet macrophages reduced VEGF-A secretion in both human and mouse islets ex vivo, and this functionally translated to delayed revascularization upon transplantation in vivo. We revealed that islet resident macrophages were associated with islet remodeling and increased insulin secretion during diabetes. This suggests utility in harnessing islet macrophages during this phase to promote islet vascularization, remodeling, and insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Hiperinsulinismo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Macrófagos/fisiologia , Remodelação Vascular/fisiologia , Animais , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Camundongos , Neovascularização Fisiológica , Tamanho do Órgão , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Eur J Immunol ; 48(7): 1114-1119, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29974950

RESUMO

Cell ablation is a valuable complement to mutagenesis for experimentally defining specific cell functions in physiology and pathophysiology in small animal models. One of the most popular ablation strategies involves transgenic expression of a primate diphtheria toxin receptor (DTR) on murine cells that are otherwise resistant to the bacterial exotoxin. The efforts of many laboratories using the DTR approach over the years have yielded numerous valuable insights into specific cell functions. Here, we will discuss the technical aspects of the DTR approach, including the strengths, pitfalls, and future strategies to overcome the shortcomings, highlighting a recent paper published in the European Journal of Immunology [El Hachem et al. Eur. J. Immunol. 2018 https://doi.org/10.1002/eji.201747351]. A particular focus will be given to the application of DTR approach to decipher in vivo functions of the murine myeloid cell compartment.


Assuntos
Toxina Diftérica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Animais , Basófilos , Células Progenitoras de Granulócitos e Macrófagos , Camundongos , Camundongos Transgênicos
12.
J Immunol ; 199(10): 3691-3699, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29030488

RESUMO

Intestinal IL-17-producing cells, including Th17, γ/δ T, and innate lymphoid cells, are differentially distributed along the gastrointestinal tract. In this study, we show that the gut IL-17-producing γ/δ T (γ/δ T17) cells develop before birth and persist in the tissue as long-lived cells with minimal turnover. Most colon γ/δ T17 cells express, together with Vγ4 and CCR6, the scavenger receptor 2 and are mainly restricted to innate lymphoid follicles in the colon. Colon γ/δ T cells in mice that lack conventional dendritic cells 2 produced increased amounts of IL-17 with concomitant heightened epithelial antimicrobial response, such as the C-type lectins Reg3γ and Reg3ß. In the absence of γ/δ T cells or after IL-17 neutralization, this epithelial response was dramatically reduced, underlining the protective role of this unique subpopulation of innate γ/δ T17 cells in the colonic mucosa.


Assuntos
Anti-Infecciosos/metabolismo , Colo/imunologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Proteínas Associadas a Pancreatite/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Desenvolvimento Fetal , Imunidade Inata , Interleucina-17/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores CCR6/metabolismo , Receptores Depuradores/metabolismo
13.
J Immunol ; 195(3): 821-31, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078270

RESUMO

The function of dendritic cells (DCs) can be modulated through multiple signals, including recognition of pathogen-associated molecular patterns, as well as signals provided by rapidly activated leukocytes in the local environment, such as innate-like T cells. In this article, we addressed the possibility that the roles of different murine DC subsets in cross-priming CD8(+) T cells can change with the nature and timing of activatory stimuli. We show that CD8α(+) DCs play a critical role in cross-priming CD8(+) T cell responses to circulating proteins that enter the spleen in close temporal association with ligands for TLRs and/or compounds that activate NKT cells. However, if NKT cells are activated first, then CD8α(-) DCs become conditioned to respond more vigorously to TLR ligation, and if triggered directly, these cells can also contribute to priming of CD8(+) T cell responses. In fact, the initial activation of NKT cells can condition multiple DC subsets to respond more effectively to TLR ligation, with plasmacytoid DCs making more IFN-α and both CD8α(+) and CD8α(-) DCs manufacturing more IL-12. These results suggest that different DC subsets can contribute to T cell priming if provided appropriately phased activatory stimuli, an observation that could be factored into the design of more effective vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Superfície/genética , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Interleucina-12/biossíntese , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/imunologia , Receptores Toll-Like/imunologia
14.
J Immunol ; 192(9): 4409-16, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683186

RESUMO

Plasmacytoid dendritic cells (pDC) produce IFN-I in response to viruses and are routinely identified in mice by SiglecH expression. SiglecH is a sialic acid-binding Ig-like lectin that has an immunomodulatory role during viral infections. In this study, we evaluated the impact of SiglecH deficiency on cytokine responses in the presence and absence of pDC. We found that lack of SiglecH enhanced IFN-I responses to viral infection, regardless of whether pDC were depleted. We also examined the expression pattern of SiglecH and observed that it was expressed by specialized macrophages and progenitors of classical dendritic cells and pDC. Accordingly, marginal zone macrophages and pDC precursors were eliminated in newly generated SiglecH-diphtheria toxin receptor (DTR)-transgenic (Tg) mice but not in CLEC4C-DTR-Tg mice after diphtheria toxin (DT) treatment. Using two bacterial models, we found that SiglecH-DTR-Tg mice injected with DT had altered bacterial uptake and were more susceptible to lethal Listeria monocytogenes infection than were DT-treated CLEC4C-DTR-Tg mice. Taken together, our findings suggest that lack of SiglecH may affect cytokine responses by cell types other than pDC during viral infections, perhaps by altering viral distribution or burden, and that cell depletion in SiglecH-DTR-Tg mice encompasses more than pDC.


Assuntos
Células Dendríticas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Lectinas/genética , Receptores de Superfície Celular/genética , Animais , Separação Celular , Citocinas/biossíntese , Citocinas/imunologia , Toxina Diftérica/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Técnicas de Introdução de Genes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Imuno-Histoquímica , Infecções/genética , Infecções/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Lectinas/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Superfície Celular/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Eur J Immunol ; 44(7): 2003-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687623

RESUMO

Alveolar macrophages (AMs), localized at the pulmonary air-tissue interface, are one of the first lines of defense that interact with inhaled airborne pathogens such as influenza viruses. By using a new CD169-DTR transgenic mouse strain we demonstrate that specific and highly controlled in vivo ablation of this myeloid cell subset leads to severe impairment of the innate, but not adaptive, immune responses and critically affects the progression of the disease. In fact, AM-ablated mice, infected with a normally sublethal dose of PR8 influenza virus, showed dramatically increased virus load in the lungs, severe airway inflammation, pulmonary edema and vascular leakage, which caused the death of the infected animals. Our data highlight the possibilities for new therapeutic strategies focusing on modulation of AMs, which may efficiently boost innate responses to influenza infections.


Assuntos
Imunidade Adaptativa , Vírus da Influenza A Subtipo H1N1 , Macrófagos Alveolares/fisiologia , Infecções por Orthomyxoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/fisiologia , Feminino , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia , Carga Viral
16.
BMC Genomics ; 15: 959, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373614

RESUMO

BACKGROUND: Over the course of its intraerythrocytic developmental cycle (IDC), the malaria parasite Plasmodium falciparum tightly orchestrates the rise and fall of transcript levels for hundreds of genes. Considerable debate has focused on the relative importance of transcriptional versus post-transcriptional processes in the regulation of transcript levels. Enzymatically active forms of RNAPII in other organisms have been associated with phosphorylation on the serines at positions 2 and 5 of the heptad repeats within the C-terminal domain (CTD) of RNAPII. We reasoned that insight into the contribution of transcriptional mechanisms to gene expression in P. falciparum could be obtained by comparing the presence of enzymatically active forms of RNAPII at multiple genes with the abundance of their associated transcripts. RESULTS: We exploited the phosphorylation state of the CTD to detect enzymatically active forms of RNAPII at most P. falciparum genes across the IDC. We raised highly specific monoclonal antibodies against three forms of the parasite CTD, namely unphosphorylated, Ser5-P and Ser2/5-P, and used these in ChIP-on-chip type experiments to map the genome-wide occupancy of RNAPII. Our data reveal that the IDC is divided into early and late phases of RNAPII occupancy evident from simple bi-phasic RNAPII binding profiles. By comparison to mRNA abundance, we identified sub-sets of genes with high occupancy by enzymatically active forms of RNAPII and relatively low transcript levels and vice versa. We further show that the presence of active and repressive histone modifications correlates with RNAPII occupancy over the IDC. CONCLUSIONS: The simple early/late occupancy by RNAPII cannot account for the complex dynamics of mRNA accumulation over the IDC, suggesting a major role for mechanisms acting downstream of RNAPII occupancy in the control of gene expression in this parasite.


Assuntos
Genoma de Protozoário , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , RNA Polimerase II/metabolismo , Anticorpos Monoclonais/farmacologia , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Biologia Computacional , Eritrócitos/parasitologia , Dosagem de Genes , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/antagonistas & inibidores , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/química , RNA Mensageiro/genética , Transcrição Gênica , Ativação Transcricional
17.
J Immunol ; 189(3): 1128-32, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732587

RESUMO

Plasmodium infections trigger strong innate and acquired immune responses, which can lead to severe complications, including the most feared and often fatal cerebral malaria (CM). To begin to dissect the roles of different dendritic cell (DC) subsets in Plasmodium-induced pathology, we have generated a transgenic strain, Clec9A-diphtheria toxin receptor that allows us to ablate in vivo Clec9A(+) DCs. Specifically, we have analyzed the in vivo contribution of this DC subset in an experimental CM model using Plasmodium berghei, and we provide strong evidence that the absence of this DC subset resulted in complete resistance to experimental CM. This was accompanied with dramatic reduction of brain CD8(+) T cells, and those few cerebral CD8(+) T cells present had a less activated phenotype, unlike their wildtype counterparts that expressed IFN-γ and especially granzyme B. This almost complete absence of local cellular responses was also associated with reduced parasite load in the brain.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Lectinas Tipo C/fisiologia , Malária Cerebral/imunologia , Malária Cerebral/patologia , Receptores Imunológicos/fisiologia , Animais , Antígeno CD11c/biossíntese , Morte Celular/imunologia , Células Clonais , Células Dendríticas/parasitologia , Toxina Diftérica/administração & dosagem , Toxina Diftérica/toxicidade , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Feminino , Humanos , Lectinas Tipo C/biossíntese , Malária Cerebral/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmodium berghei/imunologia , Receptores Imunológicos/biossíntese
18.
J Immunol ; 188(4): 1789-98, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22250091

RESUMO

A simultaneous engagement of different pathogen recognition receptors provides a tailor-made adaptive immunity for an efficient defense against distinct pathogens. For example, cross-talk of TLR and C-type lectin signaling effectively shapes distinct gene expression patterns by integrating the signals at the level of NF-κB. In this study, we extend this principle to a strong synergism between the dectin-1 agonist curdlan and an inflammatory growth factor, GM-CSF. Both together act in synergy in inducing a strong inflammatory signature that converts immature dendritic cells (DCs) to potent effector DCs. A variety of cytokines (IL-1ß, IL-6, TNF-α, IL-2, and IL-12p70), costimulatory molecules (CD80, CD86, CD40, and CD70), chemokines (CXCL1, CXCL2, CXCL3, CCL12, CCL17), as well as receptors and molecules involved in fugal recognition and immunity such as Mincle, dectin-1, dectin-2, and pentraxin 3 are strongly upregulated in DC treated simultaneously with curdlan and GM-CSF. The synergistic effect of both stimuli resulted in strong IκBα phosphorylation, its rapid degradation, and enhanced nuclear translocation of all NF-κB subunits. We further identified MAPK ERK as one possible integration site of both signals, because its phosphorylation was clearly augmented when curdlan was coapplied with GM-CSF. Our data demonstrate that the immunomodulatory activity of curdlan requires an additional signal provided by GM-CSF to successfully initiate a robust ß-glucan-specific cytokine and chemokine response. The integration of both signals clearly prime and tailor a more effective innate and adaptive response against invading microbes and fungi.


Assuntos
Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fatores Imunológicos , beta-Glucanas/imunologia , Animais , Antígenos CD/biossíntese , Diferenciação Celular , Quimiocinas/biossíntese , Citocinas/biossíntese , Sinergismo Farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteínas I-kappa B/metabolismo , Lectinas Tipo C/agonistas , Lectinas Tipo C/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação , Polissacarídeos Bacterianos/imunologia , Transdução de Sinais , beta-Glucanas/farmacologia
19.
Elife ; 122024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787378

RESUMO

Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.


Assuntos
Vírus da Dengue , Dengue , Lipoproteínas HDL , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Animais , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Chlorocebus aethiops , Camundongos , Humanos , Lipoproteínas HDL/metabolismo , Células Vero , Dengue/virologia , Dengue/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Multimerização Proteica , Microscopia Crioeletrônica
20.
J Biol Chem ; 287(14): 10714-26, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334666

RESUMO

Integrins are heterodimeric type I membrane cell adhesion molecules that are involved in many biological processes. Integrins are bidirectional signal transducers because their cytoplasmic tails are docking sites for cytoskeletal and signaling molecules. Kindlins are cytoplasmic molecules that mediate inside-out signaling and activation of the integrins. The three kindlin paralogs in humans are kindlin-1, -2, and -3. Each of these contains a 4.1-ezrin-radixin-moesin (FERM) domain and a pleckstrin homology domain. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Here we show that kindlin-3 is involved in integrin αLß2 outside-in signaling. It also promotes micro-clustering of integrin αLß2. We provide evidence that kindlin-3 interacts with the receptor for activated-C kinase 1 (RACK1), a scaffold protein that folds into a seven-blade propeller. This interaction involves the pleckstrin homology domain of kindlin-3 and blades 5-7 of RACK1. Using the SKW3 human T lymphoma cells, we show that integrin αLß2 engagement by its ligand ICAM-1 promotes the association of kindlin-3 with RACK1. We also show that kindlin-3 co-localizes with RACK1 in polarized SKW3 cells and human T lymphoblasts. Our findings suggest that kindlin-3 plays an important role in integrin αLß2 outside-in signaling.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Linhagem Celular Tumoral , Polaridade Celular , Proteínas de Ligação ao GTP/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas de Neoplasias/química , Ligação Proteica , Transporte Proteico , Receptores de Quinase C Ativada , Receptores de Superfície Celular/química , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA