Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mycorrhiza ; 29(3): 219-226, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30989396

RESUMO

According to isotopic labeling experiments, most of the carbon used by truffle (Tuber sp.) fruiting bodies to develop underground is provided by host trees, suggesting that trees and truffles are physically connected. However, such physical link between trees and truffle fruiting bodies has never been observed. We discovered fruiting bodies of Tuber aestivum adhering to the walls of a belowground quarry and we took advantage of this unique situation to analyze the physical structure that supported these fruiting bodies in the open air. Observation of transversal sections of the attachment structure indicated that it was organized in ducts made of gleba-like tissue and connected to a network of hyphae traveling across soil particles. Only one mating type was detected by PCR in the gleba and in the attachment structure, suggesting that these two organs are from maternal origin, leaving open the question of the location of the opposite paternal mating type.


Assuntos
Ascomicetos/fisiologia , Carpóforos/fisiologia , Simbiose , Árvores/microbiologia , Carbono/metabolismo , Genes Fúngicos Tipo Acasalamento , Micorrizas , Reação em Cadeia da Polimerase
2.
Ann Bot ; 121(6): 1151-1161, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29373642

RESUMO

Background and Aims: Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Methods: Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. Key Results: In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. Conclusions: This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.


Assuntos
Resistência à Flexão , Madeira , Força Compressiva , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Populus/anatomia & histologia , Populus/fisiologia , Resistência à Tração , Madeira/anatomia & histologia , Madeira/fisiologia
3.
New Phytol ; 202(1): 79-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24329812

RESUMO

Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats. Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats. We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention.


Assuntos
Ecossistema , Raízes de Plantas/anatomia & histologia , Caules de Planta/anatomia & histologia , Chuva , Árvores/anatomia & histologia , Clima Tropical , Madeira/anatomia & histologia , Guiana Francesa , Filogenia , Análise de Componente Principal , Característica Quantitativa Herdável , Especificidade da Espécie , Gravidade Específica
4.
J Exp Bot ; 60(11): 3023-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19436045

RESUMO

The mechanism for tree orientation in angiosperms is based on the production of high tensile stress on the upper side of the inclined axis. In many species, the stress level is strongly related to the presence of a peculiar layer, called the G-layer, in the fibre cell wall. The structure of the G-layer has recently been described as a hydrogel thanks to N(2) adsorption-desorption isotherms of supercritically dried samples showing a high mesoporosity (pores size from 2-50 nm). This led us to revisit the concept of the G-layer that had been, until now, only described from anatomical observation. Adsorption isotherms of both normal wood and tension wood have been measured on six tropical species. Measurements show that mesoporosity is high in tension wood with a typical thick G-layer while it is much less with a thinner G-layer, sometimes no more than normal wood. The mesoporosity of tension wood species without a G-layer is as low as in normal wood. Not depending on the amount of pores, the pore size distribution is always centred around 6-12 nm. These results suggest that, among species producing fibres with a G-layer, large structural differences of the G-layer exist between species.


Assuntos
Biofísica/métodos , Árvores/química , Fenômenos Biomecânicos , Porosidade , Estresse Mecânico , Árvores/anatomia & histologia , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA