Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 22(2): 322-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22179855

RESUMO

Androgen receptor (AR) is a hormone-activated transcription factor that plays important roles in prostate development and function, as well as malignant transformation. The downstream pathways of AR, however, are incompletely understood. AR has been primarily known as a transcriptional activator inducing prostate-specific gene expression. Through integrative analysis of genome-wide AR occupancy and androgen-regulated gene expression, here we report AR as a globally acting transcriptional repressor. This repression is mediated by androgen-responsive elements (ARE) and dictated by Polycomb group protein EZH2 and repressive chromatin remodeling. In embryonic stem cells, AR-repressed genes are occupied by EZH2 and harbor bivalent H3K4me3 and H3K27me3 modifications that are characteristic of differentiation regulators, the silencing of which maintains the undifferentiated state. Concordantly, these genes are silenced in castration-resistant prostate cancer rendering a stem cell-like lack of differentiation and tumor progression. Collectively, our data reveal an unexpected role of AR as a transcriptional repressor inhibiting non-prostatic differentiation and, upon excessive signaling, resulting in cancerous dedifferentiation.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Análise por Conglomerados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Motivos de Nucleotídeos , Orquiectomia , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Elementos de Resposta , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional
2.
Stem Cells ; 31(12): 2767-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23712882

RESUMO

Tissue-specific stem cell (TSC) number is tightly regulated in normal individuals but can change following severe injury. We previously showed that tracheobronchial epithelial TSC number increased after severe naphthalene (NA) injury and then returned to normal. This study focused on the fate of the supernumerary TSC and the signals that regulate TSC pool size. We used the Keratin 5-rTA/Histone 2B:green fluorescent protein (GFP) model to purify basal cells that proliferated infrequently (GFP(bright) ) or frequently (GFP(dim) ) after NA injury. Both populations contained TSC but TSCs were 8.5-fold more abundant in the GFP(bright) population. Interestingly, both populations also contained a unipotential basal progenitor (UPB), a mitotic basal cell subtype whose daughters were terminally differentiated basal cells. The ratio of TSC to UPB was 5:1 in the GFP(bright) population and 1:5 in the GFP(dim) population. These data suggested that TSC proliferation in vivo promoted TSC-to-UPB differentiation. To evaluate this question, we cloned TSC from the GFP(bright) and GFP(dim) populations and passaged the clones seven times. We found that TSC number decreased and UPB number increased at each passage. Reciprocal changes in TSC and UPB frequency were more dramatic in the GFP(dim) lineage. Gene expression analysis showed that ß-catenin and Notch pathway genes were differentially expressed in freshly isolated TSC derived from GFP(bright) and GFP(dim) populations. We conclude that (a) TSC and UPB are members of a single lineage; (b) TSC proliferation in vivo or in vitro promotes TSC-to-UPB differentiation; and (c) an interaction between the ß-catenin and Notch pathways regulates the TSC-to-UPB differentiation process.


Assuntos
Brônquios/citologia , Células-Tronco/citologia , Traqueia/citologia , Animais , Brônquios/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo , Traqueia/metabolismo
3.
Am J Respir Cell Mol Biol ; 45(2): 403-10, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21131447

RESUMO

Multipotential (MP) differentiation is one characteristic of a tissue-specific stem cell (TSC). Lineage tracing of tracheobronchial basal cells after naphthalene (NA) injury or in the postnatal period demonstrated that basal cells were MP progenitors for Clara-like and ciliated cells. These studies, as well as reports of spatially restricted, label-retaining basal cells, and MP differentiation by human bronchial cells support the hypothesis that a TSC maintained and repaired the tracheobronchial epithelium. However, differences in basal cell phenotype (keratin [K] 5+ versus K14+), age (postnatal versus adult), health status (normal versus injured), and injury type (acid, detergent, NA) limited comparisons among studies and thus diminished the strength of the TSC argument. The finding that K14 was up-regulated after NA injury was a caveat to our previous analysis of reparative (r)K14-expressing cells (EC). Thus, the present study lineage traced steady-state (s)K14EC and evaluated differentiation potential in the normal and repairing epithelium. We showed that sK14EC were unipotential in the normal epithelium and MP after NA, sK14EC-dervied clones were not restricted to putative TSC niches, sK14EC cells were a direct progenitor for Clara-like and ciliated cells, MP-sK14EC clones accumulated over time, and sK14EC-derived Clara-like cells were progenitors for ciliated cells.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Epiteliais/metabolismo , Queratina-14/fisiologia , Células-Tronco/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Animais , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Camundongos , Naftalenos/toxicidade , Fenótipo , Regeneração , Traqueia/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA