Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(11): e1010088, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843592

RESUMO

While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen.


Assuntos
Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/genética , Estudo de Associação Genômica Ampla/métodos , Mutação , Proteínas de Protozoários/genética , Interferência de RNA , Animais , Clonagem Molecular , DNA de Protozoário , Entamebíase/parasitologia , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genoma de Protozoário , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Protozoários/metabolismo
2.
PLoS Pathog ; 11(12): e1005347, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26720604

RESUMO

It has become increasingly clear that the functions of eosinophils extend beyond host defense and allergy to metabolism and tissue regeneration. These influences have strong potential to be relevant in worm infections in which eosinophils are prominent and parasites rely on the host for nutrients to support growth or reproduction. The aim of this study was to investigate the mechanism underlying the observation that eosinophils promote growth of Trichinella spiralis larvae in skeletal muscle. Our results indicate that IL-4 and eosinophils are necessary for normal larval growth and that eosinophils from IL-4 competent mice are sufficient to support growth. The eosinophil-mediated effect operates in the absence of adaptive immunity. Following invasion by newborn larvae, host gene expression in skeletal muscle was compatible with a regenerative response and a shift in the source of energy in infected tissue. The presence of eosinophils suppressed local inflammation while also influencing nutrient homeostasis in muscle. Redistribution of glucose transporter 4 (GLUT4) and phosphorylation of Akt were observed in nurse cells, consistent with enhancement of glucose uptake and glycogen storage by larvae that is known to occur. The data are consistent with a mechanism in which eosinophils promote larval growth by an IL-4 dependent mechanism that limits local interferon-driven responses that otherwise alter nutrient metabolism in infected muscle. Our findings document a novel interaction between parasite and host in which worms have evolved a strategy to co-opt an innate host cell response in a way that facilitates their growth.


Assuntos
Eosinófilos/imunologia , Interações Hospedeiro-Parasita/imunologia , Interleucina-4/imunologia , Triquinelose/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imunidade Inata/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Trichinella spiralis/imunologia
3.
J Immunol ; 194(1): 283-90, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25429065

RESUMO

Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection.


Assuntos
Eosinófilos/imunologia , Larva/imunologia , Trichinella spiralis/imunologia , Triquinelose/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Coinfecção , Proteína Básica Maior de Eosinófilos/genética , Peroxidase de Eosinófilo/genética , Eosinófilos/transplante , Imunização Passiva , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/imunologia , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Plasmócitos/imunologia , Ratos , Trichinella spiralis/patogenicidade , Triquinelose/parasitologia , Triquinelose/patologia
4.
J Immunol ; 193(8): 4178-87, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25210122

RESUMO

Eosinophilia is a feature of the host immune response that distinguishes parasitic worms from other pathogens, yet a discrete function for eosinophils in worm infection has been elusive. The aim of this study was to clarify the mechanism(s) underlying the striking and unexpected observation that eosinophils protect intracellular, muscle-stage Trichinella spiralis larvae against NO-mediated killing. Our findings indicate that eosinophils are specifically recruited to sites of infection at the earliest stage of muscle infection, consistent with a local response to injury. Early recruitment is essential for larval survival. By producing IL-10 at the initiation of infection, eosinophils expand IL-10(+) myeloid dendritic cells and CD4(+) IL-10(+) T lymphocytes that inhibit inducible NO synthase (iNOS) expression and protect intracellular larvae. The results document a novel immunoregulatory function of eosinophils in helminth infection, in which eosinophil-derived IL-10 drives immune responses that eventually limit local NO production. In this way, the parasite co-opts an immune response in a way that enhances its own survival.


Assuntos
Eosinófilos/imunologia , Interleucina-10/imunologia , Óxido Nítrico/biossíntese , Trichinella spiralis/imunologia , Triquinelose/imunologia , Animais , Arginase/genética , Arginase/metabolismo , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Doença Crônica , Células Dendríticas/imunologia , Eosinofilia/imunologia , Interleucina-10/biossíntese , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/biossíntese , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA