RESUMO
The purpose of this study was to investigate the effect of dietary n-3 very-long-chain PUFA (n-3 VLC-PUFA) on the maturation and development of skin tissue in juvenile Atlantic salmon (Salmo salar) in vivo, as well as their effects on skin keratocyte and human skin fibroblast cell migration in vitro. Atlantic salmon were fed different dietary levels of n-3 VLC-PUFA from an initial weight of 6 g to a final weight of 11 g. Changes in skin morphology were analysed at two time points during the experiment, and the effects on skin tissue fatty acid composition were determined. Additionally, in vitro experiments using human dermal fibroblasts and primary Atlantic salmon keratocytes were conducted to investigate the effect of VLC-PUFA on the migration capacity of the cells. The results demonstrated that increased dietary levels of n-3 VLC-PUFA led to an increased epidermis thickness and more rapid scale maturation in Atlantic salmon skin in vivo, leading to a more mature skin morphology, and possibly more robust skin, at an earlier life stage. Additionally, human skin fibroblasts and salmon skin keratocytes supplemented with n-3 VLC-PUFA in vitro showed more rapid migration, indicating potentially beneficial effects of VLC-PUFA in wound healing. In conclusion, VLC-PUFA may have beneficial effects on skin tissue development, function and integrity.
RESUMO
The present study evaluated the effects of increasing the dietary levels of EPA and DHA in Atlantic salmon (Salmo salar) reared in sea cages, in terms of growth performance, welfare, robustness and overall quality. Fish with an average starting weight of 275 g were fed one of four different diets containing 10, 13, 16 and 35 g/kg of EPA and DHA (designated as 1·0, 1·3, 1·6 and 3·5 % EPA and DHA) until they reached approximately 5 kg. The 3·5 % EPA and DHA diet showed a significantly beneficial effect on growth performance and fillet quality compared with all other diets, particularly the 1 % EPA and DHA diet. Fish fed the diet containing 3·5 % EPA and DHA showed 400-600 g higher final weights, improved internal organ health scores and external welfare indicators, better fillet quality in terms of higher visual colour score and lower occurrence of dark spots and higher EPA and DHA content in tissues at the end of the feeding trial. Moreover, fish fed the 3·5 % EPA and DHA diet showed lower mortality during a naturally occurring cardiomyopathy syndrome outbreak, although this did not reach statistical significance. Altogether, our findings emphasise the importance of dietary EPA and DHA to maintain good growth, robustness, welfare and fillet quality of Atlantic salmon reared in sea cages.
Assuntos
Ácidos Graxos Ômega-3 , Salmo salar , Animais , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Dieta/veterinária , Ração Animal/análiseRESUMO
There is limited knowledge about the metabolism and function of n-3 very-long-chain PUFA (n-3 VLC-PUFA) with chain lengths ≥ 24. They are known to be produced endogenously in certain tissues from EPA and DHA and not considered to originate directly from dietary sources. The aim of this study was to investigate whether n-3 VLC-PUFA from dietary sources are bio-available and deposited in tissues of rat, fish and mouse. Rats were fed diets supplemented with a natural fish oil (FO) as a source of low dietary levels of n-3 VLC-PUFA, while Atlantic salmon and mice were fed higher dietary levels of n-3 VLC-PUFA from a FO concentrate. In all experiments, n-3 VLC-PUFA incorporation in organs was investigated. We found that natural FO, due to its high EPA content, to a limited extent increased endogenous production of n-3 VLC-PUFA in brain and eye of mice with neglectable amounts of n-3 VLC-PUFA originating from diet. When higher dietary levels were given in the form of concentrate, these fatty acids were bio-available and deposited in both phospholipids and TAG fractions of all tissues studied, including skin, eye, brain, testis, liver and heart, and their distribution appeared to be tissue-dependent, but not species-specific. When dietary EPA and DHA were balanced and n-3 VLC-PUFA increased, the major n-3 VLC-PUFA from the concentrate increased significantly in the organs studied, showing that these fatty acids can be provided through diet and thereby provide a tool for functional studies of these VLC-PUFA.
Assuntos
Ácidos Graxos Ômega-3 , Salmo salar , Animais , Dieta/veterinária , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Óleos de Peixe , Masculino , Camundongos , Ratos , Salmo salar/metabolismoRESUMO
Atlantic salmon were fed diets containing graded levels of EPA + DHA (1·0, 1·3, 1·6 and 3·5 % in the diet) and one diet with 1·3 % of EPA + DHA with reduced total fat content. Fish were reared in sea cages from about 275 g until harvest size (about 5 kg) and were subjected to delousing procedure (about 2·5 kg), with sampling pre-, 1 h and 24 h post-stress. Delousing stress affected plasma cortisol and hepatic mRNA expression of genes involved in oxidative stress and immune response, but with no dietary effects. Increasing EPA + DHA levels in the diet increased the trace mineral levels in plasma and liver during mechanical delousing stress period and whole body at harvest size. The liver Se, Zn, Fe, Cu, and Mn and plasma Se levels were increased in fish fed a diet high in EPA + DHA (3·5 %) upon delousing stress. Furthermore, increased dietary EPA + DHA caused a significant increase in mRNA expression of hepcidin antimicrobial peptide (HAMP), which is concurrent with downregulated transferrin receptor (TFR) expression levels. High dietary EPA + DHA also significantly increased the whole-body Zn, Se, and Mn levels at harvest size fish. Additionally, the plasma and whole-body Zn status increased, respectively, during stress and at harvest size in fish fed reduced-fat diet with less EPA + DHA. As the dietary upper limits of Zn and Se are legally added to the feeds and play important roles in maintaining fish health, knowledge on how the dietary fatty acid composition and lipid level affect body stores of these minerals is crucial for the aquaculture industry.
Assuntos
Salmo salar , Animais , Salmo salar/metabolismo , Dieta , Ácidos Graxos/metabolismo , Minerais , RNA MensageiroRESUMO
BACKGROUND: Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content is needed for sustained genetic progress in these two traits. The laboratory-based reference method for recording fillet lipid content is highly accurate and precise but, at the same time, expensive, time-consuming, and destructive. Here, we test the use of rapid and cheaper vibrational spectroscopy methods, namely near-infrared (NIR) and Raman spectroscopy both as individual phenotypes and phenotypic predictors of lipid content in Atlantic salmon. RESULTS: Remarkably, 827 of the 1500 individual Raman variables (i.e. Raman shifts) of the Raman spectrum were significantly heritable (heritability (h2) ranging from 0.15 to 0.65). Similarly, 407 of the 2696 NIR spectral landscape variables (i.e. wavelengths) were significantly heritable (h2 = 0.27-0.40). Both Raman and NIR spectral landscapes had significantly heritable regions, which are also informative in spectroscopic predictions of lipid content. Partial least square predicted lipid content using Raman and NIR spectra were highly concordant and highly genetically correlated with the lipid content values ([Formula: see text] = 0.91-0.98) obtained with the reference method using Lin's concordance correlation coefficient (CCC = 0.63-0.90), and were significantly heritable ([Formula: see text] = 0.52-0.67). CONCLUSIONS: Both NIR and Raman spectral landscapes show substantial additive genetic variation and are highly genetically correlated with the reference method. These findings lay down the foundation for rapid spectroscopic measurement of lipid content in salmonid breeding programmes.
Assuntos
Produtos Pesqueiros/normas , Lipídeos/análise , Característica Quantitativa Herdável , Salmo salar/genética , Análise Espectral Raman/métodos , Animais , Cruzamento/métodos , Cruzamento/normas , Metabolismo dos Lipídeos , Lipídeos/genética , Polimorfismo Genético , Padrões de Referência , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/normas , Análise Espectral Raman/normasRESUMO
This study finds significant differences in hepatic fatty acid composition between four groups of Atlantic salmon (Salmo salar) consisting of offspring from families selected for high and low capacities to express the delta 6 desaturase isomer b and fed diets with 10% or 75% fish oil. The results demonstrated that hepatic lipid metabolism was affected by experimental conditions (diet/family). The fatty acid composition in the four groups mirrored the differences in dietary composition, but it was also associated with the family groups. Small RNA sequencing followed by RT-qPCR identified 12 differentially expressed microRNAs (DE miRNAs), with expression associated with family groups (miR-146 family members, miR-200b, miR-214, miR-221, miR-125, miR-135, miR-137, miR_nov_1), diets (miR-203, miR-462) or both conditions. All the conserved DE miRNAs have been reported as associated with lipid metabolism in other vertebrates. In silico predictions revealed 37 lipid metabolism pathway genes, including desaturases, transcription factors and key enzymes in the synthesis pathways as putative targets (e.g., srebp-1 and 2, Δ6fad_b and c, hmdh, elovl4 and 5b, cdc42). RT-qPCR analysis of selected target genes showed expression changes that were associated with diet and with family groups (d5fad, d6fad_a, srebp-1). There was a reciprocal difference in the abundance of ssa-miR-203a-3p and srebp-1 in one group comparison, whereas other predicted targets did not reveal any evidence of being negatively regulated by degradation. More experimental studies are needed to validate and fully understand the predicted interactions and how the DE miRNAs may participate in the regulation of hepatic lipid metabolism.
Assuntos
Ração Animal/análise , Dieta/veterinária , Gorduras na Dieta/análise , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Salmo salar/genética , Animais , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/genética , Salmo salar/metabolismoRESUMO
There is an urgent need to find alternative feed resources that can further substitute fishmeal in Atlantic salmon diets without compromising health and food quality, in particular during the finishing feeding period when the feed demand is highest and flesh quality effects are most significant. This study investigates efficacy of substituting a isoprotein (35 %) and isolipid (35 %) low fishmeal diet (FM, 15 %) with Antarctic krill meal (KM, 12 %) during 3 months with growing finishing 2·3 kg salmon (quadruplicate sea cages/diet). Final body weight (3·9 (se 0·04) kg) was similar in the dietary groups, but the KM group had more voluminous body shape, leaner hearts and improved fillet integrity, firmness and colour. Ectopic epithelial cells and focal Ca deposits in intestine were only detected in the FM group. Transcriptome profiling by microarray of livers showed dietary effects on several immune genes, and a panel of structural genes were up-regulated in the KM group, including cadherin and connexin. Up-regulation of genes encoding myosin heavy chain proteins was the main finding in skeletal muscle. Morphology examination by scanning electron microscopy and secondary structure by Fourier transform IR spectroscopy revealed more ordered and stable collagen architecture of the KM group. NEFA composition of skeletal muscle indicated altered metabolism of n-3, n-6 and SFA of the KM group. The results demonstrated that improved health and meat quality in Atlantic salmon fed krill meal were associated with up-regulation of immune genes, proteins defining muscle properties and genes involved in cell contacts and adhesion, altered fatty acid metabolism and fat deposition, and improved gut health and collagen structure.
Assuntos
Ração Animal/análise , Salmo salar , Alimentos Marinhos/análise , Animais , Euphausiacea , Análise de Alimentos , Qualidade dos Alimentos , Perfilação da Expressão Gênica , Fígado/metabolismoRESUMO
The present study aimed to elucidate how Atlantic salmon adipocytes pre-enriched with palmitic (16:0, PA), oleic (18:1n-9, OA), or eicosapentaenoic (20:5n-3, EPA) acid respond to a fasting condition mimicked by nutrient deprivation and glucagon. All experimental groups were supplemented with radiolabeled PA to trace secreted lipids and distribution of radioactivity in different lipid classes. There was a higher content of intracellular lipid droplets in adipocytes pre-enriched with OA than in adipocytes pre-enriched with PA or EPA. In the EPA group, the radiolabeled PA was mainly esterified in phospholipids and triacylglycerols, whereas in the OA and PA groups, the radioactivity was mainly recovered in phospholipids and cholesterol-ester. By subjecting the experimental groups to nutrient-deprived media supplemented with glucagon, lipolysis occurred in all groups, although to a lower extent in the OA group. The lipids were mainly secreted as esterified lipids in triacylglycerols and phospholipids, indicating mobilization in lipoproteins. A significant proportion was secreted as free fatty acids and glycerol. Leptin secretion was reduced in all experimental groups in response to fasting, while the mitochondria area responded to changes in the energy supply and demand by increasing after 3 h of fasting. Overall, different lipid classes in adipocytes influenced their mobilization during fasting.
Assuntos
Adipócitos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Salmo salar/metabolismo , Animais , Jejum , Ácidos Graxos/metabolismo , Óleos de Peixe/metabolismo , Glucagon/metabolismo , Glicerol/metabolismo , Gotículas Lipídicas , Lipídeos , Lipólise , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Salmo salar/genética , Triglicerídeos/metabolismoRESUMO
Adipocytes play a central role in overall energy homeostasis and are important contributors to the immune system. Fatty acids (FAs) act as signaling molecules capable to modulate adipocyte metabolism and functions. To identify the effects of two commonly used FAs in Atlantic salmon diets, primary adipocytes were cultured in the presence of oleic (OA) or docosahexaenoic (DHA) acid. DHA decreased adipocyte lipid droplet number and area compared to OA. The increase in lipid load in OA treated adipocytes was paralleled by an increase in iNOS activity and mitochondrial SOD2-GFP activity, which was probably directed to counteract increase in oxidative stress. Under lipopolysaccharide (LPS)-induced inflammation, DHA had a greater anti-inflammatory effect than OA, as evidenced by the higher SOD2 activity and the transcriptional regulation of antioxidant enzymes and pro- and anti-inflammatory markers. In addition, DHA maintained a healthy mitochondrial structure under induced inflammation while OA led to elongated mitochondria with a thin thread like structures in adipocytes exposed to LPS. Overall, DHA possess anti-inflammatory properties and protects Atlantic salmon against oxidative stress and limits lipid deposition. Furthermore, DHA plays a key role in protecting mitochondria shape and function.
Assuntos
Adipócitos/imunologia , Adipócitos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Imunidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Salmo salar/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacosRESUMO
The present study aimed to determine if the long-chain MUFA cetoleic acid (22 : 1n-11) can improve the capacity to synthesise the health-promoting n-3 fatty acids EPA and DHA in human and fish models. Human hepatocytes (HepG2) and salmon primary hepatocytes were first enriched with cetoleic acid, and thereafter their capacities to convert radio-labelled 18 : 3n-3 (α-linolenic acid, ALA) to EPA and DHA were measured. Increased endogenous levels of cetoleic acid led to increased production of radio-labelled EPA + DHA in HepG2 by 40 % and EPA in salmon hepatocytes by 12 %. In order to verify if dietary intake of a fish oil rich in cetoleic acid would have the same beneficial effects on the n-3 fatty acid metabolic pathway in vivo as found in vitro, Atlantic salmon were fed four diets supplemented with either sardine oil low in cetoleic acid or herring oil high in cetoleic acid at two inclusion levels (Low or High). The diets were balanced for EPA + DHA content within the Low and within the High groups. The salmon were fed these diets from 110 to 242 g. The level of EPA + DHA in liver and whole-body retention of docosapentaenoic acid and EPA + DHA relative to what was eaten, increased with increased dietary cetoleic acid levels. Thus, it is concluded that cetoleic acid stimulated the synthesis of EPA and DHA from ALA in human HepG2 and of EPA in salmon hepatocytes in vitro and increased whole-body retention of EPA + DHA in salmon by 15 % points after dietary intake of cetoleic acid.
Assuntos
Ácido Eicosapentaenoico/metabolismo , Ácidos Erúcicos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Salmo salar/metabolismo , Animais , Células Hep G2 , Humanos , Salmo salar/crescimento & desenvolvimentoRESUMO
Limited availability of fish oils (FO), rich in n-3 long-chain (≥C20) PUFA, is a major constraint for further growth of the aquaculture industry. Long-chain n-3 rich oils from crops GM with algal genes are promising new sources for the industry. This project studied the use of a newly developed n-3 canola oil (DHA-CA) in diets of Atlantic salmon fingerlings in freshwater. The DHA-CA oil has high proportions of the n-3 fatty acids (FA) 18 : 3n-3 and DHA and lower proportions of n-6 FA than conventional plant oils. Levels of phytosterols, vitamin E and minerals in the DHA-CA were within the natural variation of commercial canola oils. Pesticides, mycotoxins, polyaromatic hydrocarbons and heavy metals were below lowest qualifiable concentration. Two feeding trials were conducted to evaluate effects of two dietary levels of DHA-CA compared with two dietary levels of FO at two water temperatures. Fish increased their weight approximately 20-fold at 16°C and 12-fold at 12°C during the experimental periods, with equal growth in salmon fed the FO diets compared with DHA-CA diets. Salmon fed DHA-CA diets had approximately the same EPA+DHA content in whole body as salmon fed FO diets. Gene expression, lipid composition and oxidative stress-related enzyme activities showed only minor differences between the dietary groups, and the effects were mostly a result of dietary oil level, rather than the oil source. The results demonstrated that DHA-CA is a safe and effective replacement for FO in diets of Atlantic salmon during the sensitive fingerling life-stage.
Assuntos
Ração Animal , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleo de Brassica napus/administração & dosagem , Salmo salar , Animais , Austrália , Colesterol/química , Perfilação da Expressão Gênica , Intestinos , Metabolismo dos Lipídeos , Metabolômica , Noruega , Estresse Oxidativo , Fitosteróis/química , Plantas Geneticamente Modificadas/química , Sementes/química , Temperatura , Vitamina E/química , Vitamina K/químicaRESUMO
BACKGROUND: The replacement of fish oil (FO) and fishmeal with plant ingredients in the diet of farmed Atlantic salmon has resulted in reduced levels of the health-promoting long-chain polyunsaturated omega-3 fatty acids (n-3 LC-PUFA) eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in their filets. Previous studies showed the potential of selective breeding to increase n-3 LC-PUFA levels in salmon tissues, but knowledge on the genetic parameters for individual muscle fatty acids (FA) and their relationships with other traits is still lacking. Thus, we estimated genetic parameters for muscle content of individual FA, and their relationships with lipid deposition traits, muscle pigmentation, sea lice and pancreas disease in slaughter-sized Atlantic salmon. Our aim was to evaluate the selection potential for increased n-3 LC-PUFA content and provide insight into FA metabolism in Atlantic salmon muscle. RESULTS: Among the n-3 PUFA, proportional contents of alpha-linolenic acid (ALA; 18:3n-3) and DHA had the highest heritability (0.26) and EPA the lowest (0.09). Genetic correlations of EPA and DHA proportions with muscle fat differed considerably, 0.60 and 0.01, respectively. The genetic correlation of DHA proportion with visceral fat was positive and high (0.61), whereas that of EPA proportion with lice density was negative. FA that are in close proximity along the bioconversion pathway showed positive correlations with each other, whereas the start (ALA) and end-point (DHA) of the pathway were negatively correlated (- 0.28), indicating active bioconversion of ALA to DHA in the muscle of fish fed high FO-diet. CONCLUSIONS: Since contents of individual FA in salmon muscle show additive genetic variation, changing FA composition by selective breeding is possible. Taken together, our results show that the heritabilities of individual n-3 LC-PUFA and their genetic correlations with other traits vary, which indicates that they play different roles in muscle lipid metabolism, and that proportional muscle contents of EPA and DHA are linked to body fat deposition. Thus, different selection strategies can be applied in order to increase the content of healthy omega-3 FAin the salmon muscle. We recommend selection for the proportion of EPA + DHA in the muscle because they are both essential FA and because such selection has no clear detrimental effects on other traits.
Assuntos
Ácidos Graxos Ômega-3/análise , Músculos/química , Característica Quantitativa Herdável , Salmo salar/genética , Tecido Adiposo , Algoritmos , Ração Animal/análise , Animais , Cruzamento , Gordura Intra-Abdominal , Metabolismo dos LipídeosRESUMO
In intensive farming of Atlantic salmon, a large proportion of observed mortality is related to cardiovascular diseases and circulatory failure, indicating insufficient robustness and inadequate cardiac performance. This paper reports on the use of tetradecylthioacetic acid (TTA) where the main objective was to enhance utilisation of fatty acids (FA), considered the main energy source of the heart. In this study, three experiments were conducted: (I) an in vivo study where salmon post-smolt were administrated dietary TTA in sea, (II) an in vitro study where isolated salmon heart cells were pre-stimulated with increasing doses of TTA and (III) an in vivo experiment where salmon post-smolt were subjected to injections with increasing doses of TTA. In study I, TTA-treated fish had a smaller decrease in heart weight relative to fish bodyweight (CSI) in a period after sea transfer compared to the control. This coincided with lowered condition factor and muscle fat in the TTA-treated fish, which may indicate a higher oxidation of lipids for energy. In study II, the isolated hearts treated with the highest dose of TTA had higher uptake of radiolabelled FA and formation of CO2 and acid-soluble products. In study III, expression of genes regulating peroxisomal FA oxidation, cell growth, elongation and desaturation were upregulated in the heart of TTA injected salmon. In contrast, genes involved in FA transport into the mitochondria were not influenced. In conclusion, these experiments indicate that TTA enhances energy production in salmon hearts by stimulation of FA oxidation.
Assuntos
Dieta/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Salmo salar/metabolismo , Sulfetos/farmacologia , Animais , Antioxidantes/farmacologia , Técnicas In Vitro , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução , Salmo salar/crescimento & desenvolvimentoRESUMO
BACKGROUND: Carnivorous teleost fish utilize glucose poorly, and the reason for this is not known. It is possible that the capacity of adipocytes to synthesize lipids from carbohydrate precursors through a process known as "de novo lipogenesis" (DNL) is one of the factors that contributes to glucose intolerance in Atlantic salmon. METHODS: Primary adipocytes from Atlantic salmon differentiated in vitro were incubated with radiolabelled glucose in order to explore the capacity of salmon adipocytes to synthesize and deposit lipids from glucose through DNL. The lipid-storage capacity of adipocytes incubated with glucose was compared with that of cells incubated with the fatty acid palmitic acid. Quantitative PCR and immunohistochemistry were used to assess changes of genes and proteins involved in glucose and lipid transport and metabolism. RESULTS: Less than 0.1% of the radiolabelled glucose was metabolized to the fatty acids 16:0 and the stearoyl-CoA desaturase products 16:1 and 18:1 by DNL, whereas approximately 40% was converted to glycerol to form the triacylglycerol backbone of lipids. Transcriptional analysis indicated that adipocytes ensure the availability of necessary cofactors and other substrates for lipid synthesis and storage from glycolysis, the pentose phosphate pathway and glyceroneogenesis. CONCLUSIONS: We have shown for the first time that the DNL pathway is active in fish adipocytes. The capacity of the pathway to convert glucose into cellular lipids for storage is relatively low. GENERAL SIGNIFICANCE: The limited capacity of adipocytes to utilize glucose as a substrate for lipid deposition may contribute to glucose intolerance in salmonids.
Assuntos
Adipócitos/metabolismo , Lipogênese , Animais , Proteínas de Transporte de Ácido Graxo/fisiologia , Glucose/metabolismo , Transportador de Glucose Tipo 4/fisiologia , Metabolismo dos Lipídeos , Ácido Palmítico/metabolismo , Salmo salar , Triglicerídeos/biossínteseRESUMO
Farmed salmon feeds have changed from purely marine-based diets with high levels of EPA and DHA in the 1990s to the current 70 % plant-based diets with low levels of these fatty acids (FA). The aim of this study was to establish the impacts of low dietary EPA and DHA levels on performance and tissue integrity of Atlantic salmon (Salmo salar). Atlantic salmon (50 g) in seawater were fed fourteen experimental diets, containing five levels (0, 0·5, 1·0, 1·5 and 2·0 %) of EPA, DHA or a 1:1 EPA+DHA plus control close to a commercial diet, to a final weight of 400 g. Lack of EPA and DHA did not influence mortality, but the n-3-deficient group exhibited moderately slower growth than those fed levels above 0·5 %. The heart and brain conserved EPA and DHA levels better than skeletal muscle, liver, skin and intestine. Decreased EPA and DHA favoured deposition of pro-inflammatory 20 : 4n-6 and 20 : 3n-6 FA in membrane phospholipids in all tissues. When DHA was excluded from diets, 18 : 3n-3 and EPA were to a large extent converted to DHA. Liver, skeletal and cardiac muscle morphology was normal in all groups, with the exception of cytoplasm packed with large or foamy vacuoles and sometimes swollen enterocytes of intestine in both deficient and EPA groups. DHA supplementation supported normal intestinal structure, and 2·0 % EPA+DHA alleviated deficiency symptoms. Thus, EPA and DHA dietary requirements cannot be based exclusively on growth; tissue integrity and fish health also need to be considered.
Assuntos
Ração Animal/análise , Dieta/veterinária , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Salmo salar/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/metabolismo , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Músculo Esquelético/anatomia & histologia , Necessidades NutricionaisRESUMO
The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1ß in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1ß and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.
Assuntos
Ácidos Graxos Ômega-3/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Salmo salar/fisiologia , Receptores Toll-Like/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Gorduras na Dieta , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim Cefálico/química , Rim Cefálico/metabolismo , Receptores Toll-Like/genéticaRESUMO
The present study was conducted to evaluate the effects on Atlantic salmon hepatic lipid metabolism when fed diets with increasing substitution of fish oil (FO) with a vegetable oil (VO) blend. Four diets with VOs replacing 100, 90, 79 and 65 % of the FO were fed for 5 months. The levels of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the experimental diets ranged from 1.3 to 7.4 % of fatty acids (FAs), while cholesterol levels ranged from 0.6 to 1.2 g kg(-1). In hepatocytes added [1-(14)C] α-linolenic acid (ALA, 18:3n-3), more ALA was desaturated and elongated to EPA and DHA in cells from fish fed 100 % VO, while in fish fed 65 % VO, ALA was elongated to eicosatrienoic acid (ETE; 20:3n-3), indicating reduced Δ6 desaturation activity. Despite increased desaturation activity and activation of the transcription factor Sp1 in fish fed 100 % VO, liver phospholipids contained less EPA and DHA compared with the 65 % VO group. The cholesterol levels in the liver of the 100 % VO group exceeded the levels in fish fed the 65 % VO diet, showing an inverse relationship between cholesterol intake and liver cholesterol content. For the phytosterols, levels in liver were generally low. The area as a proxy of volume of lipid droplets was significantly higher in salmon fed 100 % VO compared with salmon fed 65 % VO. In conclusion, the current study suggests that suboptimal dietary levels of cholesterol in combination with low levels of EPA and DHA (1.3 % of FAs) can result in minor metabolic perturbations in the liver of Atlantic salmon.
Assuntos
Dieta/veterinária , Óleos de Peixe/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Óleos de Plantas/farmacologia , Salmo salar/metabolismo , Animais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fígado/química , Esteróis/análise , Esteróis/metabolismoRESUMO
Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.
Assuntos
Ácido Eicosapentaenoico , Imunidade Inata , Rim , Poli I-C , Salmo salar , Animais , Salmo salar/imunologia , Salmo salar/genética , Salmo salar/virologia , Imunidade Inata/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Linhagem Celular , Poli I-C/farmacologia , Rim/efeitos dos fármacos , Rim/imunologia , Rim/metabolismo , Transcriptoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão GênicaRESUMO
Very long chain fatty acids (VLCFA) have a chain length ≥24 carbons. Fish contain low levels of these fatty acids. A commercial oil called EPAX® Evolve 05 with an up-concentration of VLCFAs of approximately 10 times, has been developed as a dietary supplement by Epax Norway AS. A series of toxicological studies were performed using mice and rats to determine the safety and toxicity of repeat dosing with a gavage administered VLCFA formulation. The results suggest transient lipid accumulation in kidneys and liver. Lipid accumulation was seen with the test item and with the soya control but was not dose related. Liver and kidney lipid accumulation, whilst present in 14- day repeat dose study, was absent in a 90-day rat study. No treatment-effect was seen in urine analysis in any of the studies. No treatment-related effects were seen with a functional observation battery, ophthalmological examination, haematology, urine analysis, oestrus cycle, thyroid hormones, organ weight, or histopathology. In the 90-day study the liver enzymes ALP, AST and ALT were statistically significantly increased with test item but within control values. There were no associated histological findings in the liver suggesting there was no toxic effect and the normalisation of values for all liver enzymes in the recovery groups suggests an adaptive response rather than a prevailing toxic response. The no-observed-adverse-effect level (NOAEL) was determined as 1200 mg VLCFA/kg b.w./day.