Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BJU Int ; 109(7): 1100-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21883862

RESUMO

OBJECTIVE: To determine the effects of intracrystalline (IC), surface-bound (SB) and combined IC + SB osteopontin (OPN) on the binding of urinary calcium oxalate dihydrate (COD) crystals to Madin-Darby canine kidney (MDCK-II) cells in ultrafiltered (UF) human urine. MATERIALS AND METHODS: (14)C-oxalic acid-labelled urinary COD crystals containing IC OPN were generated in pooled UF human urine containing human milk OPN at concentrations of 0, 1.0 and 5.0 mg/L. Additional labelled crystals were nucleated from a separate sample of the same pooled UF urine, to which were later added the same amounts of protein to produce crystals with SB OPN. COD crystals with IC+SB OPN were prepared using a combination of both techniques. Control crystals were prepared in the absence of OPN. Crystals were incubated with MDCK-II cells for up to 180 min in UF urine adjusted to 8 mm Ca(2+). Binding values for individual concentrations at specific time points and overall differences between binding curves were compared using the Mann-Whitney U-test. Crystal morphology and attachment to the cells were confirmed using field emission scanning electron microscopy (FESEM). RESULTS: The sizes of crystals precipitated from UF urine in the presence of 0, 1 and 5 mg/L OPN were 21.9 µm, 19.3 µm and 16.5 µm, indicating that OPN had inhibited crystal growth in a dose-dependent fashion. Binding curves for control crystals were smooth, while those of the IC and IC+SB COD crystals associated with 1 and 5 mg/L OPN were bimodal, as were those of the 1 mg/L SB crystals. This suggests that OPN induces or potentiates a transient response that enables MDCK-II cells to release COD crystals after they have attached. Although OPN generally reduced the binding of urinary COD crystals to MDCK-II cells, at times it also appeared to mediate adhesion. It is possible therefore that OPN can reduce or increase crystal binding, and that our data represent the net effect of its opposing inhibitory or promotory properties. CONCLUSIONS: In UF urine, OPN inhibits the growth of COD crystals and reduces the binding of urinary COD crystals to MDCK-II cells, regardless of whether it is IC, SB, or IC+SB. Future studies aimed at clarifying the effects of OPN, or indeed any urinary component, on crystal-cell interaction, should use crystals precipitated from urine and be performed under urinary conditions.


Assuntos
Oxalato de Cálcio/metabolismo , Rim/metabolismo , Osteopontina/farmacologia , Urina , Animais , Linhagem Celular , Células Cultivadas , Cristalização , Cães , Humanos , Microscopia Eletrônica de Varredura
2.
Urol Res ; 40(1): 1-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21932131

RESUMO

In vivo, urinary crystals are associated with proteins located within the mineral bulk as well as upon their surfaces. Proteins incarcerated within the mineral phase of retained crystals could act as a defence against urolithiasis by rendering them more vulnerable to destruction by intracellular and interstitial proteases. The aim of this study was to examine the effects of intracrystalline and surface-bound osteopontin (OPN) on the degradation and dissolution of urinary calcium oxalate dihydrate (COD) crystals in cultured Madin Darby canine kidney (MDCK) cells. [(14)C]-oxalate-labelled COD crystals with intracrystalline (IC), surface-bound (SB) and IC + SB OPN, were generated from ultrafiltered (UF) urine containing 0, 1 and 5 mg/L human milk OPN and incubated with MDCKII cells, using UF urine as the binding medium. Crystal size and degradation were assessed using field emission scanning electron microscopy (FESEM) and dissolution was quantified by the release of radioactivity into the culture medium. Crystal size decreased directly with OPN concentration. FESEM examination indicated that crystals covered with SB OPN were more resistant to cellular degradation than those containing IC OPN, whose degree of disruption appeared to be related to OPN concentration. Whether bound to the crystal surface or incarcerated within the mineral interior, OPN inhibited crystal dissolution in direct proportion to its concentration. Under physiological conditions OPN may routinely protect against stone formation by inhibiting the growth of COD crystals, which would encourage their excretion in urine and thereby perhaps partly explain why, compared with calcium oxalate monohydrate crystals, COD crystals are more prevalent in urine, but less common in kidney stones.


Assuntos
Oxalato de Cálcio/metabolismo , Rim/metabolismo , Osteopontina/fisiologia , Animais , Oxalato de Cálcio/química , Células Cultivadas , Cristalização , Cães , Humanos , Microscopia Eletrônica de Varredura , Solubilidade , Urolitíase/prevenção & controle
3.
J Proteome Res ; 9(10): 5402-12, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20795672

RESUMO

The aim of this study was to compare the intracrystalline protein profiles of hydroxyapatite (HA), brushite (BR), and uric acid (UA) crystals precipitated from the same urine samples. HA, BR, and UA crystals were precipitated on two different occasions from the same pooled healthy urine. Crystals were washed to remove surface-bound proteins, and their composition was confirmed using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDAX). SDS-PAGE was used for visual comparison of the protein content of the demineralised crystal extracts, which were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). HA comprised nanosized particles interspersed with organic material, which was absent from the BR and UA crystals. The number and type of individual proteins differed between the 3 minerals: 45 proteins were detected in the HA crystal extracts and 77 in the BR crystals, including a number of keratins, which were regarded as methodological contaminants. After excluding the keratins, 21 proteins were common to both HA and BR crystals. Seven nonkeratin proteins were identified in the UA extracts. Several proteins consistently detected in the HA and BR crystal extracts have been previously implicated in kidney stone disease, including osteopontin, prothrombin, protein S100A9 (calgranulin B), inter-α-inhibitor, α1-microglobulin bikunin (AMBP), heparan sulfate proteoglycan, and Tamm-Horsfall glycoprotein, all of which are strong calcium binders. We concluded that the association of proteins with HA, BR, and UA crystals formed in healthy urine is selective and that only a few of the numerous proteins present in healthy urine are likely to play any significant role in preventing stone pathogenesis.


Assuntos
Fosfatos de Cálcio/urina , Durapatita/urina , Proteínas/análise , Proteômica/métodos , Ácido Úrico/urina , Fosfatos de Cálcio/química , Cromatografia Líquida , Cristalização , Durapatita/química , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Ácido Úrico/química
4.
J Proteome Res ; 9(9): 4745-57, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20672853

RESUMO

The aim of this study was to compare the comprehensive intracrystalline protein profiles of calcium oxalate monohydrate (COM) and dihydrate (COD) crystals precipitated from the same human urine samples. Three separate batches of COM and COD crystals were precipitated from pooled healthy human urine by the addition of sodium oxalate at calcium concentrations of 2 and 8 mM, respectively. Proteins in whole extracts of demineralised COM and COD crystals, as well as in spots excised from 2D-PAGE gels of the extracts, were identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). The number and type of individual proteins differed between COM and COD: 14 substantive proteins were found inside COM crystal extracts and 34 inside COD, with 9 proteins occurring in both crystal types. Numerous keratins were detected. However, in line with consensus in the proteomics literature, as well as a lack of published evidence linking them to urolithiasis, they were excluded as contaminants, leaving very few consistently detected proteins. On the basis of their known association with stone disease or identification in multiple runs, the principal proteins in COM crystal extracts were prothrombin fragment 1, protein S100A9, and IGkappaV1-5, while those in extracts of COD crystals included osteopontin, IGkappaV1-5, protein S100A9, annexin A1, HMW kininogen-1, and inter-alpha-inhibitor (IalphaI). In general, proteins incorporated into both hydromorphs were acidic (pI<6), smaller than 55 kDa, and calcium binders. We concluded that the incorporation of proteins into urinary COM and COD crystals is selective and that only a few of the urinary proteins associated with the two hydromorphs are likely to play any significant role in stone pathogenesis.


Assuntos
Oxalato de Cálcio/urina , Proteoma/química , Proteômica/métodos , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Cromatografia Líquida , Cristalização , Eletroforese em Gel Bidimensional , Feminino , Humanos , Cálculos Renais/química , Cálculos Renais/metabolismo , Cálculos Renais/urina , Masculino , Proteoma/metabolismo , Espectrometria de Massas em Tandem
5.
BJU Int ; 105(5): 708-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19694711

RESUMO

OBJECTIVE: To compare the binding to Madin-Darby canine kidney (MDCK)-II cells of: (i) inorganic calcium oxalate monohydrate (iCOM) crystals and COM crystals precipitated from urine containing different concentrations of protein; and (ii) urinary COM crystals containing intracrystalline and intracrystalline + surface-bound protein. MATERIALS AND METHODS: Urinary COM crystals were generated in sieved (sCOM), centrifuged and filtered (cfCOM), and ultrafiltered (ufCOM) portions of a pooled human urine and their adhesion to MDCK-II cells was compared using six different ultrafiltered urine samples as the binding medium. Crystal matrix extract (CME) was prepared by demineralizing calcium oxalate crystals precipitated from human urine and used to prepare COM crystals with intracrystalline, and intracrystalline + surface-bound CME at protein concentrations of 0, 0.05, 0.1, 0.5 and 5.0 mg/L. The amount of protein associated with the crystals was qualitatively assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting, using prothrombin fragment 1 (PTF1) as a marker. Protein concentration was determined in sieved, centrifuged and filtered, and ultrafiltered fractions of 10 additional urine samples. RESULTS: The median crystal attachment in the six urine types decreased in the order iCOM > ufCOM > cfCOM = sCOM, in inverse proportion to the concentration of protein in the solution or urine from which they were precipitated. sCOM and cfCOM crystals bound approximately 23% less than iCOM crystals. The attachment of COM crystals generated in the presence of increasing concentrations of CME proteins was unaffected up to a concentration of 5 mg/L, but binding of crystals containing the same concentrations of intracrystalline + surface-bound proteins decreased proportionally at protein concentrations from 0 to 5.0 mg/L. CONCLUSION: Inorganic COM crystals bind significantly more strongly to MDCK-II cells than urinary crystals precipitated from sieved, centrifuged and filtered, and ultrafiltered urine, and binding affinity is inversely related to the concentration of protein in the urine in which they are formed. While both intracrystalline and superficial CME proteins reduce the attachment of COM crystals to MDCK-II cells, those located on the crystal surface have a greater influence than those incarcerated within the mineral bulk. Future cell-crystal interaction studies should use urinary crystals and be performed in human urine.


Assuntos
Oxalato de Cálcio/metabolismo , Rim/citologia , Proteínas de Membrana/fisiologia , Urina/citologia , Animais , Western Blotting , Células Cultivadas , Cristalização , Cães , Humanos , Rim/metabolismo
6.
BJU Int ; 106(11): 1768-74, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20230382

RESUMO

OBJECTIVE: To compare the binding kinetics of urinary calcium oxalate monohydrate (COM) and dihydrate (COD) crystals to human kidney (HK-2) cells in ultra-filtered (UF), and centrifuged and filtered (CF) human urine; and to quantify the binding of COM and COD crystals to cultured HK-2 cells in UF and CF urine samples collected from different individuals. MATERIALS AND METHODS: Urine was collected from healthy subjects, pooled, centrifuged and filtered. (14) C-oxalate-labelled COM and COD crystals were precipitated from the urine by adding oxalate after adjustment of two aliquots of the urine to 2 and 8 mm Ca(2+), respectively. For the kinetic study, the crystals were incubated with HK-2 cells for up to 120 min in pooled CF urine adjusted to 2 and 8 mm Ca(2+). Identical experiments were also carried out in UF urine samples collected from the same individuals. For the quantitative study, the same radioactively labelled COM and COD crystals were incubated with HK-2 cells for 50 min in separate CF and UF urines collected from eight healthy individuals at the native Ca(2+) concentrations of the urines. Field emission electron microscopy and Fourier transform-infrared spectroscopy were used to confirm crystal morphology. RESULTS: COM and COD crystals generally bound more strongly at 8 mm than at 2 mm Ca(2+). The kinetic binding curves of COM were smooth, while those of COD were consistently biphasic, suggesting that the two crystal types induce different cellular metabolic responses: HK-2 cells crystals appear to possess a transitory mechanism for detaching COD, but not COM crystals. In UF urine, COM binding was significantly greater than that of COD at 2 mm Ca(2+), but at 8 mm Ca(2+) the binding of COD was greater at early and late time points. COD also bound significantly more strongly at early time points in CF urine at both 2 and 8 mm Ca(2+). In both CF and UF urine, there was no difference between the binding affinity of urinary COM and COD crystals. CONCLUSION: Binding of both COM and COD crystals to cultured human renal epithelial cells is influenced by urinary macromolecules and ambient Ca(2+) concentration. HK-2 cells appear to possess a mechanism for the rapid detachment of bound COD crystals, making it difficult to show any unambiguous overall difference between the binding affinity of COM and COD crystals.


Assuntos
Oxalato de Cálcio/metabolismo , Rim/citologia , Oxalato de Cálcio/urina , Células Cultivadas , Cristalização , Células Epiteliais , Humanos , Rim/metabolismo , Microscopia Eletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Urol Res ; 38(5): 357-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20652561

RESUMO

Our aim was to examine the attachment to, and incorporation of intact, highly phosphorylated osteopontin (OPN) into inorganic (i) and urinary (u) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals. uCOM and uCOD crystals were precipitated from ultrafiltered (UF) urine containing human milk OPN (mOPN) labelled with Alexa Fluor 647 fluorescent dye at concentrations of 0.1-5.0 mg/L. iCOM and iCOD crystals were generated in aqueous solutions at concentrations of 0.01-0.5 mg/L. Crystals were demineralised with EDTA and the resulting extracts analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis and western blotting, or examined by fluorescent confocal microscopy and field emission scanning electron microscopy before and after washing to remove proteins bound reversibly to the crystal surfaces. Binding of mOPN to pre-formed iCOM crystals was also studied in phosphate-buffered saline (PBS) and ultrafiltered (UF) urine. mOPN attached to the {100} faces and to the {010} sides of the {100}/{010} edges of iCOM crystals was removed by washing, indicating that it was not incorporated into the mineral bulk. In both PBS and urine, mOPN was attached to the {021} faces of pre-formed iCOM crystals as well as to the {100}/{010} edges, but was concentrated at the intersection points of the {100} and {121} faces at the crystal tips. Attachment in UF urine appeared to be greater than in PBS and stronger at higher calcium concentrations than lower calcium concentrations. In uCOM crystals, the distribution of fluorescence and patterns of erosion after washing suggested attachment of mOPN to the four end faces, followed by interment within the mineral phase. Fluorescence distributions of mOPN associated with both iCOD and uCOD crystals were consistent with uniform binding of the protein to all equivalent {101} faces and concentration along the intersections between them. Persistence of fluorescence after washing indicated that most mOPN was incarcerated within the mineral phase. We concluded that attachment of mOPN to calcium oxalate crystals is face-specific and depends upon the anatomical and genetic source of the protein and whether the crystals are (1) COM or COD; (2) pre-formed or precipitated from solution, and (3) precipitated from urine or aqueous solutions. Our findings emphasise the need for caution when drawing conclusions about possible roles of OPN or other proteins in urolithiasis from experimental data obtained under inorganic conditions.


Assuntos
Oxalato de Cálcio/química , Oxalato de Cálcio/urina , Osteopontina/química , Cristalização , Humanos
8.
BJU Int ; 103(6): 826-35, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19021614

RESUMO

OBJECTIVE: To compare the intracrystalline distributions of prothrombin fragment 1 (PTF1) and human serum albumin (HSA) within inorganic and urinary calcium oxalate (CaOx) monohydrate (COM) crystals and to determine whether binding of PTF1 can be explained by interactions between particular gamma-carboxyglutamic (Gla) residues and atomic arrays on individual faces of the COM crystal. MATERIALS AND METHODS COM: crystals were precipitated from inorganic solutions and ultrafiltered urine containing fluorescent HSA or PTF1 at different relative concentrations and examined by fluorescence microscopy. Accelrys Materials Studio and Discovery Studio were used to model the binding of PTF1 to the top, side and apical faces of the COM crystal. RESULTS: PTF1 alone always adsorbed predominantly to the COM apical surfaces, while HSA bound principally to the side faces under inorganic conditions, but to the apical faces in urine. In the presence of each other, both proteins competed for adsorption to the apical faces, with attachment of PTF1 dominating over that of HSA. Modelling showed that urinary PTF1 had equal theoretical bonding potential for all three COM surfaces. CONCLUSIONS: (i) Anisotropic inclusion of HSA and PTF1 into urinary and inorganic COM crystals results from their preferential binding to specific COM faces; (ii) the binding preference of HSA differs under inorganic and urinary conditions; (iii) preferential binding of PTF1 to the apical faces of COM is more complex than can be explained by interactions between Gla groups and surface atomic arrays; (iv) future studies of interactions between urinary proteins and stone mineral crystal surfaces should be performed in urine.


Assuntos
Oxalato de Cálcio/química , Fragmentos de Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Protrombina/metabolismo , Albumina Sérica/metabolismo , Cálculos Urinários/química , Urolitíase/metabolismo , Cristalização , Humanos
9.
Chem Biol ; 10(3): 271-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12670541

RESUMO

Hyperuricosuria has long been documented as a predisposing factor to calcium oxalate (CaOx) stone pathogenesis. However, its mechanism is still without sound scientific foundation. Previously, we showed that hyperuricosuria, simulated by the addition of dissolved sodium urate, promotes the crystallization of CaOx. In the present study, we demonstrate that the urate's effect on the crystallization is attributable to its salting out CaOx from solution. Furthermore, analysis of urines revealed that their metastable limit decreased with increases in the product of the prevailing concentrations of calcium and urate: this has implications for CaOx stone genesis. We also outline anti-salting out strategies for future research for the prevention and/or treatment of CaOx calculi.


Assuntos
Oxalato de Cálcio/química , Oxalato de Cálcio/urina , Ácido Úrico/química , Ácido Úrico/urina , Precipitação Química , Cristalização , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Microscopia Eletrônica de Varredura
10.
J Bone Miner Res ; 18(7): 1282-91, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12854839

RESUMO

UNLABELLED: The existence of intracrystalline proteins and amino acids in calcium oxalate monohydrate was demonstrated by X-ray synchrotron diffraction studies. Their presence has implications for the destruction of calcium oxalate crystals formed in the urinary tract and the prevention of kidney stones. INTRODUCTION: Although proteins are present in human kidney stones, their role in stone pathogenesis remains unknown. This investigation aimed to characterize the nature of the relationship between the organic and mineral phases in calcium oxalate monohydrate (COM) crystals grown in human urine and in aqueous solutions of proteins and amino acids to clarify the function of proteins in urolithiasis. METHODS: COM crystals were grown in human urine and in aqueous solutions containing either human prothrombin (PT), Tamm-Horsfall glycoprotein (THG), aspartic acid (Asp), aspartic acid dimer (AspAsp), glutamic acid (Glu), glutamic acid dimer (GluGlu), or gamma-carboxyglutamic acid (Gla). Controls consisted of COM crystals precipitated from pure inorganic solutions or from human urine that had been ultrafiltered to remove macromolecules. Synchrotron X-ray diffraction with Rietveld whole-pattern peak fitting and profile analysis was used to determine nonuniform crystal strain and crystallite size in polycrystalline samples. RESULTS: Crystals precipitated from ultrafiltered urine had lower nonuniform strain than those grown in urine or in aqueous PT solution. Nonuniform strain was much lower in crystals grown in distilled water or in the presence of THG. For the amino acids, the highest nonuniform strain was exhibited by crystals grown in Gla solution, followed by Glu. Crystallite size was inversely related to nonuniform strain, with the effect being significantly less for amino acids than for macromolecules. CONCLUSIONS: Selected proteins and amino acids associated with COM crystals are intracrystalline. Although their incorporation into the mineral bulk would be expected to affect the rate of crystal growth, they also have the potential to influence the phagocytosis and intracellular destruction of any crystals nucleated and trapped within the renal collecting system. Crystals impregnated with protein would be more susceptible to digestion by cellular proteases, which would provide access to the crystal core, thereby facilitating further proteolytic degradation and mineral dissolution. We therefore propose that intracrystalline proteins may constitute a natural form of defense against renal stone formation.


Assuntos
Oxalato de Cálcio/química , Oxalato de Cálcio/urina , Cálculos Urinários/química , Cálculos Urinários/urina , Difração de Raios X/métodos , Biomarcadores/química , Biomarcadores/urina , Cristalização , Humanos , Microscopia Eletrônica , Proteinúria/urina , Síncrotrons
11.
Am J Physiol Renal Physiol ; 294(2): F355-61, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18077596

RESUMO

We have previously proposed that intracrystalline proteins would increase intracellular proteolytic disruption and dissolution of calcium oxalate (CaOx) crystals. Chauvet MC, Ryall RL. J Struct Biol 151: 12-17, 2005; Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL. J Bone Miner Res 18: 1282-1291, 2003; Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR. J Struct Biol 134: 5-14, 2001. The aim of this investigation was to determine the effect of increasing concentrations of intracrystalline protein on the rate of CaOx crystal dissolution in Madin-Darby canine kidney (MDCKII) cells. Crystal matrix extract (CME) was isolated from urinary CaOx monohydrate (COM) crystals. Cold and [14C]oxalate-labeled COM crystals were precipitated from ultrafiltered urine containing 0-5 mg/l CME. Crystal surface area was estimated from scanning electron micrographs, and synchrotron X-ray diffraction was used to determine nonuniform strain and crystallite size. Radiolabeled crystals were added to MDCKII cells and crystal dissolution, expressed as radioactive label released into the medium, was measured. Increasing CME content did not significantly alter crystal surface area. However, nonuniform strain increased and crystallite size decreased in a dose-response manner, both reaching saturation at a CME concentration of 3 mg/ and demonstrating unequivocally the inclusion of increasing quantities of proteins in the crystals. This was confirmed by Western blotting. Crystal dissolution also followed saturation kinetics, increasing proportionally with final CME concentration and reaching a plateau at a concentration of approximately 2 mg/l. These findings were complemented by field emission scanning electron microscopy, which showed that crystal degradation also increased relative to CME concentration. Intracrystalline proteins enhance degradation and dissolution of CaOx crystals and thus may constitute a natural defense against urolithiasis. The findings have significant ramifications in biomineral metabolism and pathogenesis of renal stones.


Assuntos
Oxalato de Cálcio/metabolismo , Células Epiteliais/metabolismo , Proteínas/análise , Cálculos Urinários/metabolismo , Animais , Oxalato de Cálcio/química , Oxalato de Cálcio/urina , Células Cultivadas , Cristalização , Cães , Humanos , Rim/citologia , Rim/metabolismo , Microscopia Eletrônica de Varredura , Osteopontina/análise , Tamanho da Partícula , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Precursores de Proteínas/análise , Precursores de Proteínas/química , Proteínas/química , Protrombina/análise , Protrombina/química , Albumina Sérica/análise , Propriedades de Superfície , Cálculos Urinários/química , Difração de Raios X
12.
Am J Physiol Renal Physiol ; 292(5): F1396-403, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17267387

RESUMO

Our aim was to determine whether fractionation of human urine affects the attachment of calcium oxalate monohydrate (COM) crystals to renal cells. Urine collected from six healthy subjects was fractionated into sieved (S), centrifuged (C), centrifuged and filtered (CF), or ultrafiltered (UF). Attachment of [(14)C]COM crystals to Madin-Darby canine kidney (MDCK) cells was studied after precoating the crystals or the cells with the urine fractions and by using the same fractions as the binding medium. Protein content of the fractions and precoated crystals was analyzed with SDS-PAGE and Western blotting. All urine fractions inhibited crystal attachment. When fractions from the six urine samples were used to precoat the cells, the median inhibitions of crystal adhesion ( approximately 40%) were not significantly different. Median inhibition after preincubation of crystals was the same for the S, C, and CF fractions ( approximately 40%) but significantly greater than for the UF fraction ( approximately 28%). When fractions were used as the binding medium, median inhibitions decreased from 64% in the S fraction to 47 (C), 42 (CF), and to 29% (UF). SDS-PAGE analysis showed that centrifugation and filtration reduced the amount of Tamm-Horsfall glycoprotein (THG), which was confirmed by Western blotting. Human serum albumin, urinary prothrombin fragment 1, and osteopontin, but not THG, were present in demineralized extracts of the precoated crystals. Fractionation of human urine affects the attachment of COM crystals to MDCK cells. Hence future studies investigating regulation of crystal-cell interactions should be carried out in untreated urine as the binding medium.


Assuntos
Oxalato de Cálcio/antagonistas & inibidores , Oxalato de Cálcio/química , Fracionamento Químico , Células Epiteliais/metabolismo , Cálculos Renais/etiologia , Rim/metabolismo , Urina/química , Urina/fisiologia , Adesividade , Albuminúria , Animais , Linhagem Celular , Cristalização , Cães , Humanos , Rim/citologia , Mucoproteínas/urina , Osteopontina/urina , Fragmentos de Peptídeos/urina , Precursores de Proteínas/urina , Protrombina/urina , Uromodulina
13.
BJU Int ; 96(4): 654-63, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16104927

RESUMO

OBJECTIVE: To compare the ultrastructure and protein content, particularly prothrombin fragment 1 and osteopontin, of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals precipitated from human urine, and their susceptibility to proteolysis, to try to clarify the role of intracrystalline proteins in urolithiasis, as differences between these types of crystal may determine whether calcium oxalate crystals nucleated in urine progress to stone formation. MATERIALS AND METHODS: Sodium dodecyl sulphate gel electrophoresis and Western blotting were used to analyse demineralized extracts of COM and/or COD crystals deposited from the same centrifuged and filtered urine (which contains abundant urinary proteins) by adjusting the calcium concentration to 2 and 7 mmol/L, respectively. Similar analyses were performed on COM and COD crystals deposited from ultrafiltered urine (which contains only proteins of < 10 kDa) and then incubated in centrifuged and filtered urine, as well as crystals generated in the presence of increasing concentrations of proteins derived from the organic matrix of urinary calcium oxalate crystals. Field-emission scanning electron microscopy was used to assess effects of proteinase K and cathepsin D on internal and superficial crystal structure. RESULTS: Osteopontin was undetectable in COM extracts, but clearly visible in COD. Prothrombin fragment 1 was abundant in COM, but present in COD in lesser amounts than osteopontin. The selectivity was also the same with crystals from ultrafiltered urine that were incubated in centrifuged and filtered urine: prothrombin fragment 1 binding was favoured by low calcium concentration, while osteopontin bound at higher levels. Scanning electron microscopy of COM and COD digested with proteinase K and cathepsin D revealed superficial and internal texture, as wells as surface erosion, in crystals from centrifuged and filtered urine, thus confirming the presence of intracrystalline proteins. Such features were absent from crystals precipitated from ultrafiltered urine. CONCLUSION: Binding of osteopontin and prothrombin fragment 1 to calcium oxalate is dictated primarily by ambient calcium concentration. Each protein may inhibit urolithiasis by inhibiting crystallization of its preferred crystal habit, and by facilitating the intracellular disintegration and dissolution of crystals attached to and internalized by renal epithelial cells.


Assuntos
Oxalato de Cálcio/urina , Fragmentos de Peptídeos/análise , Precursores de Proteínas/análise , Protrombina/análise , Sialoglicoproteínas/análise , Cálculos Urinários/urina , Western Blotting/métodos , Oxalato de Cálcio/química , Catepsina D/química , Cristalização , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/química , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Osteopontina , Conformação Proteica , Ultrafiltração , Cálculos Urinários/metabolismo
14.
Urol Res ; 33(4): 273-84, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15877223

RESUMO

Crystal adherence to the renal epithelium is widely regarded as a probable mechanism of stone formation. Intracrystalline proteins may provide access to the core of urinary crystals and thereby facilitate the dismantling of these crystals after their attachment to and phagocytosis by renal epithelial cells. The present study investigated the role of proteolysis and limited dissolution of urinary calcium oxalate (CaOx) crystals in South Africa's white and black populations with a view to understanding the remarkably low stone incidence in the black population compared with the whites. CaOx crystals were precipitated from filtered urine or ultrafiltered urine dosed with an intracrystalline protein, urinary prothrombin fragment 1 (UPTF1), isolated from white and black subjects. The crystals were fractured and subjected to proteolysis and/or limited dissolution before examination using field emission scanning electron microscopy (FESEM). FESEM data showed that CaOx crystals from white and black subjects were eroded by treatment with proteases. Cathepsin D caused the most significant crystal erosion, and more noticeable degradation of CaOx monohydrate (COM) crystals compared to CaOx dihydrate (COD). Limited dissolution studies showed the unique ultrastructures and fragmentation processes of COM and COD crystals. COM crystals appeared to be more susceptible to degradation and dissolution than CODs. Since COMs are predominant in blacks, compared with COD crystals from whites, it is speculated that the lower stone rate amongst South African blacks might be attributed partly to their more efficient destruction of retained COM crystals.


Assuntos
Oxalato de Cálcio/química , Cálculos Urinários/etiologia , Urina/química , População Negra , Western Blotting , Oxalato de Cálcio/metabolismo , Catepsina D/farmacologia , Cristalização , Endopeptidase K/farmacologia , Humanos , Microscopia Eletrônica de Varredura , Solubilidade , África do Sul , Cálculos Urinários/ultraestrutura , População Branca
15.
Mol Med ; 8(9): 525-35, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12456991

RESUMO

BACKGROUND: Previous studies demonstrated that crystals of uric acid (UA) and sodium urate (NaU) can induce the precipitation of calcium oxalate (CaOx) from its inorganic metastable solutions, but similar effects have not been unequivocally shown to occur in urine. The aim of this investigation was to determine whether preincubation of these seeds with urine alter their ability to induce deposition of CaOx from solution and thus provide a possible explanation for discrepancy of results obtained from aqueous inorganic solutions and undiluted urine. MATERIALS AND METHODS: The effects of commercial seed crystals of UA, NaU and CaOx (6 mg/100 ml) on CaOx crystallization were compared in a solution with the same crystals that had been preincubated for 3 hours with healthy male urine. A Coulter Counter was used to follow the crystallization and decrease in soluble (14) C-oxalate was measured to determine the deposition of CaOx. The precipitated particles were examined by scanning electron microscopy (SEM). The preincubated seeds were demineralized and proteins released were analyzed by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS: Analysis of (14) C-oxalate data revealed that while treated UA seeds did not affect CaOx deposition, those of NaU and CaOx inhibited the process by 51.9 (p<0.05) and 8.5% (p<0.05) relative to their respective untreated counterparts. Particle size analysis showed that the average modal sizes of particles precipitated in the presence of treated seed crystals of UA, NaU, and CaOx were very similar to those deposited in the presence of their respective untreated controls. These findings were confirmed by SEM which also showed that seed crystals of UA and NaU, untreated and treated, were attached like barnacles upon the surfaces of CaOx crystals which themselves were bigger than those precipitated in the presence of CaOx seeds. SDS-PAGE analysis of the demineralized treated seeds showed that they all selectively adsorbed urinary proteins, and perhaps other urinary macromolecules and low molecular weight components, on their surface. CONCLUSIONS: It was concluded that preincubation with urine, such as occurs in vivo, only slightly reduces the ability of seed crystals of CaOx, but not of UA, to cause deposition of CaOx. The most striking effect was on NaU seeds where the preincubation quite dramatically attenuated their promotory effect on the mineral deposition. This may explain the discrepancy between findings of studies carried out in inorganic solutions and undiluted human urine. This stresses the invalidity of directly extrapolating results obtained in inorganic solutions to likely effects in urine and more importantly, on stone formation.


Assuntos
Oxalato de Cálcio/metabolismo , Cristalização , Ácido Úrico/metabolismo , Cálculos Urinários/etiologia , Urina/fisiologia , Radioisótopos de Carbono/metabolismo , Tamanho da Partícula , Cálculos Urinários/metabolismo
16.
Clin Sci (Lond) ; 102(4): 425-34, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11914105

RESUMO

In recent years there has been great interest in the putative role of prothrombin and its activation peptides, especially the urinary form of prothrombin fragment 1, in the pathogenesis of calcium oxalate (CaOx) urolithiasis. Previously, we showed that prothrombin and its activation peptides inhibit CaOx crystallization in inorganic conditions in vitro. The aim of the present study was to determine if this inhibitory activity is retained in undiluted human urine and, therefore, whether it is likely to have any influence under physiological conditions. A secondary objective was to assess the relationship between the structures of the proteins and their inhibitory activities. Prothrombin was purified from Prothrombinex-HT, cleaved with thrombin and the resulting fragment 1 (F1) and fragment 2 (F2) were purified. The purity of each protein was confirmed by SDS/PAGE, and their effects on CaOx crystallization in undiluted ultrafiltered human urine were determined at a final concentration 80.65 nmol/l using Coulter Counter and [(14)C]oxalate analysis. The precipitated crystals were visualized using scanning electron microscopy. The Coulter Counter data revealed that, whereas prothrombin and its activation peptides did not affect the urinary metastable limit and the size of the precipitated particles, F1 did significantly reduce the latter. These findings were corroborated with scanning electron microscopy which also revealed that the reduction in particle size caused by F1 resulted from a decrease in the degree of crystal aggregation, rather than in the size of the individual crystals. The [(14)C]oxalate data showed that none of the proteins added significantly inhibited the mineral deposition. It was concluded that with the exception of F1, which does inhibit CaOx crystal aggregation, prothrombin and its activation peptides do not alter the deposition and aggregation of CaOx crystals in ultrafiltered human urine in vitro. Also, the gamma-carboxyglutamic acid domain of prothrombin and F1, which is absent from thrombin and F2, is the region of the molecules that determines their potent inhibitory effects. The superior potency of F1, compared with prothrombin, probably results from the molecule's greater charge-to-mass ratio.


Assuntos
Oxalato de Cálcio/urina , Protrombina/farmacologia , Cristalização , Eletroforese em Gel de Poliacrilamida , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Precursores de Proteínas/química , Precursores de Proteínas/farmacologia , Protrombina/química , Relação Estrutura-Atividade , Trombina/química , Trombina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA