Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867447

RESUMO

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Camundongos Knockout , Endotélio/metabolismo , Permeabilidade Capilar , Endotélio Vascular/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 321(6): H1083-H1095, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652985

RESUMO

Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-α (TNF-α) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase Cζ (PKCζ) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-α, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-α-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-α-induced NO also produced S-nitrosylation and phosphorylation of PKCζ, association of PKCζ with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCζ blocked leukocyte adhesion induced by TNF-α. Mass spectrometry analysis of purified PKCζ identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCζ may be an important regulatory step in early leukocyte adhesion in inflammation.NEW & NOTEWORTHY Contrary to the well-established inhibitory role of NO in leukocyte adhesion, we demonstrate a positive role of nitric oxide in this process. We demonstrate that NO induced by eNOS after TNF-α treatment induces early leukocyte adhesion activating the S-nitrosylation pathway. Our data suggest that PKCζ S-nitrosylation may be a key step in this process.


Assuntos
Músculos Abdominais/irrigação sanguínea , Adesão Celular , Células Endoteliais/efeitos dos fármacos , Leucócitos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Técnicas de Cocultura , Células Endoteliais/enzimologia , Ativação Enzimática , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Tempo
3.
Carcinogenesis ; 40(2): 313-323, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30624618

RESUMO

The permeability of endothelial cells is regulated by the stability of the adherens junctions, which is highly sensitive to kinase-mediated phosphorylation and endothelial nitric oxide synthase (eNOS)-mediated S-nitrosylation of its protein components. Solid tumors can produce a variety of factors that stimulate these signaling pathways leading to endothelial cell hyperpermeability. This generates stromal conditions that facilitate tumoral growth and dissemination. Galectin-8 (Gal-8) is overexpressed in several carcinomas and has a variety of cellular effects that can contribute to tumor pathogenicity, including angiogenesis. Here we explored whether Gal-8 has also a role in endothelial permeability. We show that recombinant Gal-8 activates eNOS, induces S-nitrosylation of p120-catenin (p120) and dissociation of adherens junction, leading to hyperpermeability of the human endothelial cell line EAhy926. This pathway involves focal-adhesion kinase (FAK) activation downstream of eNOS as a requirement for eNOS-mediated p120 S-nitrosylation. This suggests a reciprocal, yet little understood, regulation of phosphorylation and S-nitrosylation events acting upon adherens junction permeability. In addition, glutathione S-transferase (GST)-Gal-8 pull-down experiments and function-blocking ß1-integrin antibodies point to ß1-integrins as cell surface components involved in Gal-8-induced hyperpermeability. Endogenous Gal-8 secreted from the breast cancer cell line MCF-7 has similar hyperpermeability and signaling effects. Furthermore, the mouse cremaster model system showed that Gal-8 also activates eNOS, induces S-nitrosylation of adherens junction components and is an effective hyperpermeability agent in vivo. These results add endothelial permeability regulation by S-nitrosylation as a new function of Gal-8 that can potentially contribute to the pathogenicity of tumors overexpressing this lectin.


Assuntos
Junções Aderentes/metabolismo , Galectinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Glutationa Transferase , Humanos , Células MCF-7 , Masculino , Camundongos , Fosforilação/fisiologia
4.
Nitric Oxide ; 87: 52-59, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862477

RESUMO

S-nitrosylation, the modification by nitric oxide of free sulfhydryl groups in cysteines, has become an important regulatory mechanism in carcinogenesis and metastasis. S-nitrosylation of targets in tumor cells contributes to metastasis regulating epithelial to mesenchymal transition, migration and invasion. In the tumor environment, the role of S-nitrosylation in endothelium has not been addressed; however, the evidence points out that S-nitrosylation of endothelial proteins may regulate angiogenesis, adhesion of tumor cells to the endothelium, intra and extravasation of tumor cells and contribute to metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Metástase Neoplásica/fisiopatologia , Neovascularização Patológica/fisiopatologia , Proteínas/metabolismo , Animais , Endotélio Vascular/metabolismo , Humanos , Nitratos/metabolismo , Nitrosação , Proteínas/química
5.
Am J Physiol Heart Circ Physiol ; 313(1): H179-H189, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28476918

RESUMO

Approaches to reduce excessive edema due to the microvascular hyperpermeability that occurs during ischemia-reperfusion (I/R) are needed to prevent muscle compartment syndrome. We tested the hypothesis that cAMP-activated mechanisms actively restore barrier integrity in postischemic striated muscle. We found, using I/R in intact muscles and hypoxia-reoxygenation (H/R, an I/R mimic) in human microvascular endothelial cells (HMVECs), that hyperpermeability can be deactivated by increasing cAMP levels through application of forskolin. This effect was seen whether or not the hyperpermeability was accompanied by increased mRNA expression of VEGF, which occurred only after 4 h of ischemia. We found that cAMP increases in HMVECs after H/R, suggesting that cAMP-mediated restoration of barrier function is a physiological mechanism. We explored the mechanisms underlying this effect of cAMP. We found that exchange protein activated by cAMP 1 (Epac1), a downstream effector of cAMP that stimulates Rap1 to enhance cell adhesion, was activated only at or after reoxygenation. Thus, when Rap1 was depleted by small interfering RNA, H/R-induced hyperpermeability persisted even when forskolin was applied. We demonstrate that 1) VEGF mRNA expression is not involved in hyperpermeability after brief ischemia, 2) elevation of cAMP concentration at reperfusion deactivates hyperpermeability, and 3) cAMP activates the Epac1-Rap1 pathway to restore normal microvascular permeability. Our data support the novel concepts that 1) different hyperpermeability mechanisms operate after brief and prolonged ischemia and 2) cAMP concentration elevation during reperfusion contributes to deactivation of I/R-induced hyperpermeability through the Epac-Rap1 pathway. Endothelial cAMP management at reperfusion may be therapeutic in I/R injury.NEW & NOTEWORTHY Here, we demonstrate that 1) stimulation of cAMP production deactivates ischemia-reperfusion-induced hyperpermeability in muscle and endothelial cells; 2) VEGF mRNA expression is not enhanced by brief ischemia, suggesting that VEGF mechanisms do not activate immediate postischemic hyperpermeability; and 3) deactivation mechanisms operate via cAMP-exchange protein activated by cAMP 1-Rap1 to restore integrity of the endothelial barrier.


Assuntos
Permeabilidade Capilar , AMP Cíclico/metabolismo , Endotélio Vascular/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Proteínas de Ligação a Telômeros/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Cricetinae , Masculino , Mesocricetus , Ratos , Ratos Sprague-Dawley
6.
Am J Physiol Heart Circ Physiol ; 313(1): H66-H71, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526707

RESUMO

We tested the hypothesis that platelet-activating factor (PAF) induces S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S-nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S-nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S-nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist.NEW & NOTEWORTHY Here, we demonstrate that S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S-nitrosylation of VASP contributes to the onset of endothelial permeability.


Assuntos
Permeabilidade Capilar/fisiologia , Moléculas de Adesão Celular/metabolismo , Cisteína/metabolismo , Células Endoteliais/fisiologia , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Vasculite/metabolismo , Animais , Capilares , Bovinos , Células Cultivadas , Humanos , Mediadores da Inflamação/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 310(8): H1039-44, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921435

RESUMO

The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, ß-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of ß-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet-activating factor (PAF) as agonist. We report that PAF-stimulates S-nitrosylation of VE-cadherin, which disrupts its association with ß-catenin. In addition, based on inhibition of nitric oxide production, our results strongly suggest that S-nitrosylation is required for VE-cadherin phosphorylation on tyrosine and for its internalization. Our results unveil an important mechanism to regulate phosphorylation of junctional proteins in association with S-nitrosylation.


Assuntos
Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Vasos Coronários/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Processamento de Proteína Pós-Traducional , Vênulas/metabolismo , Junções Aderentes/efeitos dos fármacos , Animais , Transporte Biológico , Permeabilidade Capilar/efeitos dos fármacos , Cateninas/metabolismo , Bovinos , Linhagem Celular , Vasos Coronários/efeitos dos fármacos , Cricetinae , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Óxido Nítrico/metabolismo , Nitrosação , Fosforilação , Fator de Ativação de Plaquetas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Tirosina , beta Catenina/metabolismo , delta Catenina
8.
Circ Res ; 111(5): 553-63, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22777005

RESUMO

RATIONALE: Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood. OBJECTIVE: We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. METHODS AND RESULTS: We measured PAF-stimulated SNO of ß-catenin and p120-catenin (p120) in 3 cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein), and postcapillary venular endothelial cells (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of ß-catenin and p120 at the adherens junction and with hyperpermeability. Tumor necrosis factor-α increased nitric oxide production and caused similar increase in SNO as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced SNO of ß-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of nitric oxide production and of SNO blocked PAF-induced SNO and hyperpermeability, whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with vascular endothelial-cadherin. CONCLUSIONS: Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability.


Assuntos
Junções Aderentes/metabolismo , Permeabilidade Capilar/fisiologia , Cateninas/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Sequência de Aminoácidos , Animais , Permeabilidade Capilar/efeitos dos fármacos , Cateninas/genética , Bovinos , Proteínas de Fluorescência Verde/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosação/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vênulas/citologia , delta Catenina
9.
IUBMB Life ; 65(10): 819-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24078390

RESUMO

S-Nitrosation is rapidly emerging as a regulatory mechanism in vascular biology, with particular importance in the onset of hyperpermeability induced by pro-inflammatory agents. This review focuses on the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in regulating S-Nitrosation of adherens junction proteins. We discuss evidence for translocation of eNOS, via caveolae, to the cytosol and analyze the significance of eNOS location for S-Nitrosation and onset of endothelial hyperpermeability to macromolecules.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico/metabolismo , Permeabilidade , Cavéolas/metabolismo , Citosol/metabolismo , Humanos , Óxido Nítrico/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosação/genética
11.
J Biol Chem ; 286(35): 30409-30414, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757745

RESUMO

Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.


Assuntos
Citosol/enzimologia , Óxido Nítrico Sintase Tipo III/fisiologia , Calibragem , Membrana Celular/metabolismo , Citosol/metabolismo , DNA Complementar/metabolismo , Humanos , Inflamação , Microscopia de Fluorescência/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Permeabilidade , Fosforilação , Fator de Ativação de Plaquetas/metabolismo , Transporte Proteico , Frações Subcelulares
12.
Proc Natl Acad Sci U S A ; 106(16): 6849-53, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19342481

RESUMO

The molecular mechanisms of endothelial nitric oxide synthase (eNOS) regulation of microvascular permeability remain unresolved. Agonist-induced internalization may have a role in this process. We demonstrate here that internalization of eNOS is required to deliver NO to subcellular locations to increase endothelial monolayer permeability to macromolecules. Using dominant-negative mutants of dynamin-2 (dyn2K44A) and caveolin-1 (cav1Y14F), we show that anchoring eNOS-containing caveolae to plasma membrane inhibits hyperpermeability induced by platelet-activating factor (PAF), VEGF in ECV-CD8eNOSGFP (ECV-304 transfected cells) and postcapillary venular endothelial cells (CVEC). We also observed that anchoring caveolar eNOS to the plasma membrane uncouples eNOS phosphorylation at Ser-1177 from NO production. This dissociation occurred in a mutant- and cell-dependent way. PAF induced Ser-1177-eNOS phosphorylation in ECV-CD8eNOSGFP and CVEC transfected with dyn2K44A, but it dephosphorylated eNOS at Ser-1177 in CVEC transfected with cav1Y14F. Interestingly, dyn2K44A eliminated NO production, whereas cav1Y14F caused reduction in NO production in CVEC. NO production by cav1Y14F-transfected CVEC occurred in caveolae bound to the plasma membrane, and was ineffective in causing an increase in permeability. Our study demonstrates that eNOS internalization is required for agonist-induced hyperpermeability, and suggests that a mechanism by which eNOS is activated by phosphorylation at the plasma membrane and its endocytosis is required to deliver NO to subcellular targets to cause hyperpermeability.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Animais , Bovinos , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
Front Physiol ; 11: 595526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281627

RESUMO

Leukocyte recruitment is one of the most important cellular responses to tissue damage. Leukocyte extravasation is exquisitely regulated by mechanisms of selective leukocyte-endothelium recognition through adhesion proteins in the endothelial cell surface that recognize specific integrins in the activated leukocytes. A similar mechanism is used by tumor cells during metastasis to extravasate and form a secondary tumor. Nitric oxide (NO) has been classically described as an anti-inflammatory molecule that inhibits leukocyte adhesion. However, the evidence available shows also a positive role of NO in leukocyte adhesion. These apparent discrepancies might be explained by the different NO concentrations reached during the inflammatory response, which are highly modulated by the expression of different nitric oxide synthases, along the inflammatory response and by changes in their subcellular locations.

14.
Front Physiol ; 10: 988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440166

RESUMO

Glioblastoma is a highly aggressive brain tumor, characterized by the formation of dysfunctional blood vessels and a permeable endothelial barrier. S-nitrosylation, a post-translational modification, has been identified as a regulator of endothelial function. In this work we explored whether S-nitrosylation induced by glioblastoma tumors regulates the endothelial function. As proof of concept, we observed that S-nitrosylation is present in the tumoral microenvironment of glioblastoma in two different animal models. Subsequently, we measured S nitrosylation and microvascular permeability in EAhy296 endothelial cells and in cremaster muscle. In vitro, conditioned medium from the human glioblastoma cell line U87 activates endothelial nitric oxide synthase, causes VE-cadherin- S-nitrosylation and induces hyperpermeability. Blocking Interleukin-8 (IL-8) in the conditioned medium inhibited S-nitrosylation of VE-cadherin and hyperpermeability. Recombinant IL-8 increased endothelial permeability by activating eNOS, S-nitrosylation of VE-cadherin and p120, internalization of VE-cadherin and disassembly of adherens junctions. In vivo, IL-8 induced S-nitrosylation of VE-cadherin and p120 and conditioned medium from U87 cells caused hyperpermeability in the mouse cremaster muscle. We conclude that eNOS signaling induced by glioma cells-secreted IL-8 regulates endothelial barrier function in the context of glioblastoma involving S-nitrosylation of VE-cadherin and p120. Our results suggest that inhibiting S-nitrosylation may be an effective way to control and/or block damage to the endothelial barrier and prevent cancer progression.

15.
Cancers (Basel) ; 11(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382462

RESUMO

Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.

16.
Tissue Barriers ; 1(1): e23896, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24665382

RESUMO

Nitric oxide (NO) is a key factor in inflammation as it regulates microvascular permeability, leukocyte adhesion and wound healing. This mini-review addresses mainly spatial and temporal requirements of NO regulatory mechanisms, with special emphasis on S-nitrosation. Endothelial nitric oxide synthase (eNOS)-derived NO induces S-nitrosation of p120 and ß-catenin, particularly in response to platelet-activating factor (PAF), and through traffic and interactions at the adherens junction promotes endothelial hyperpermeability. S-nitrosation is a determinant in vascular processes such as vasodilation and leukocyte-endothelium interactions. Interestingly, NO decreases leukocytes adhesion to endothelium, but the mechanisms are unknown. Advances in NO molecular biology and regulation may serve as a basis for the development of new therapeutic strategies in the treatment of diseases characterized by inflammation such as ischemia-reperfusion injury, stroke, cancer and atherosclerosis.

17.
Cardiovasc Res ; 87(2): 254-61, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20462865

RESUMO

The nitric oxide (NO) cascade and endothelial NO synthase (eNOS) are best known for their role in endothelium-mediated relaxation of vascular smooth muscle. Activation of eNOS by certain inflammatory stimuli and enhanced NO release have also been shown to promote increased microvascular permeability. However, it is not entirely clear why activation of eNOS by certain vasodilatory agents, like acetylcholine, does not affect microvascular permeability, whereas activation of eNOS by other inflammatory agents that increase permeability, like platelet-activating factor, does not cause vasodilation. In this review, we discuss the evidence demonstrating the role of eNOS in the elevation of microvascular permeability. We also examine the relative importance of eNOS phosphorylation and localization in its function to promote elevated microvascular permeability as well as emerging topics with regard to eNOS and microvascular permeability regulation.


Assuntos
Líquidos Corporais/metabolismo , Permeabilidade Capilar , Endotélio Vascular/enzimologia , Microvasos/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/enzimologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Microvasos/imunologia , Microvasos/fisiopatologia , Fosforilação , Transporte Proteico , Transdução de Sinais
18.
Am J Physiol Heart Circ Physiol ; 295(4): H1642-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18708444

RESUMO

Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.


Assuntos
Permeabilidade Capilar , Cavéolas/enzimologia , Endocitose , Células Endoteliais/enzimologia , Inflamação/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Animais , Bovinos , Células Cultivadas , Dextranos/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Transfecção
19.
Am J Physiol Heart Circ Physiol ; 292(5): H2131-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17172272

RESUMO

Danshen, a Chinese herb, reduces hypertension in Oriental medicine. We hypothesized that Danshen acts partially through endothelial nitric oxide synthase (eNOS) signaling mechanisms. We tested the hypothesis using tanshinone II(A), an active ingredient of Danshen, and the two-kidney, one-clip renovascular hypertension model in hamsters. Oral tanshinone (50 microg/100 g body wt) reduced mean arterial pressure (MAP) from 161.2 +/- 6.9 to 130.0 +/- 7.8 mmHg (mean +/- SE; P < 0.05) in hypertensive hamsters. MAP in sham-operated hamsters was 114.3 +/- 9.2 mmHg. Topical tanshinone at 1 microg/ml and 5 microg/ml increased normalized arteriolar diameter from 1.00 to 1.25 +/- 0.08 and 1.57 +/- 0.11, respectively, and increased periarteriolar nitric oxide concentration from 87.1 +/- 11.3 to 146.9 +/- 23.1 nM (P < 0.05) at 5 microg/ml in hamster cheek pouch. N(G)-monomethyl-L-arginine inhibited tanshinone-induced vasodilation. Hypertension reduced eNOS protein relative to sham-operated control. Tanshinone prevented the hypertension-induced reduction of eNOS and increased eNOS expression to levels higher than sham-operated control in hamster cheek pouch. Topical tanshinone increased normalized arteriolar diameter from 1.0 to 1.47 +/- 0.08 in the cremaster muscle of control mice and to 1.12 +/- 0.13 in cremasters of eNOS knockout mice. In ECV-304 cells transfected with eNOS-green fluorescent protein, tanshinone increased eNOS protein expression 1.35 +/- 0.05- and 1.85 +/- 0.07-fold above control after 5-min and 1-h application, respectively. Tanshinone also increased eNOS phosphorylation 1.19 +/- 0.07- and 1.72 +/- 0.20-fold relative to control after 5-min and 1-h application. Our data provide a basis to understand the action of a Chinese herb used in alternative medicine. We conclude that eNOS stimulation is one mechanism by which tanshinone induces vasodilation and reduces blood pressure.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Microcirculação/fisiopatologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Cricetinae , Sistemas de Liberação de Medicamentos/métodos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III , Salvia miltiorrhiza , Resultado do Tratamento
20.
Am J Physiol Heart Circ Physiol ; 291(3): H1058-64, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16679407

RESUMO

Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10(-5) M, 10(-4) M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10(-7) M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/fisiologia , Acetilcolina/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Cricetinae , Citosol/enzimologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica , Complexo de Golgi/enzimologia , Humanos , Masculino , Mesocricetus , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/genética , Fator de Ativação de Plaquetas/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA