Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2119297119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776546

RESUMO

Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.


Assuntos
Anfípodes , Extremidades , Regeneração , Anfípodes/embriologia , Anfípodes/genética , Animais , Embrião não Mamífero , Extremidades/embriologia , Expressão Gênica , Regeneração/genética
2.
Genome Res ; 30(12): 1727-1739, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33144405

RESUMO

Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.


Assuntos
Proteínas Aviárias/genética , Perfilação da Expressão Gênica/métodos , Aves Canoras/genética , Testículo/metabolismo , Animais , Encéfalo/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Rim/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA , Aves Canoras/fisiologia , Especificidade da Espécie
3.
PLoS Biol ; 16(1): e2005099, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357348

RESUMO

Asymmetric cell division is essential to generate cellular diversity. In many animal cells, the cleavage plane lies perpendicular to the mitotic spindle, and it is the spindle positioning that dictates the size of the daughter cells. Although some properties of spindle positioning are conserved between distantly related model species and different cell types, little is known of the evolutionary robustness of the mechanisms underlying this event. We recorded the first embryonic division of 42 species of nematodes closely related to Caenorhabditis elegans, which is an excellent model system to study the biophysical properties of asymmetric spindle positioning. Our recordings, corresponding to 128 strains from 27 Caenorhabditis and 15 non-Caenorhabditis species (accessible at http://www.ens-lyon.fr/LBMC/NematodeCell/videos/), constitute a powerful collection of subcellular phenotypes to study the evolution of various cellular processes across species. In the present work, we analyzed our collection to the study of asymmetric spindle positioning. Although all the strains underwent an asymmetric first cell division, they exhibited large intra- and inter-species variations in the degree of cell asymmetry and in several parameters controlling spindle movement, including spindle oscillation, elongation, and displacement. Notably, these parameters changed frequently during evolution with no apparent directionality in the species phylogeny, with the exception of spindle transverse oscillations, which were an evolutionary innovation at the base of the Caenorhabditis genus. These changes were also unrelated to evolutionary variations in embryo size. Importantly, spindle elongation, displacement, and oscillation each evolved independently. This finding contrasts starkly with expectations based on C. elegans studies and reveals previously unrecognized evolutionary changes in spindle mechanics. Collectively, these data demonstrate that, while the essential process of asymmetric cell division has been conserved over the course of nematode evolution, the underlying spindle movement parameters can combine in various ways. Like other developmental processes, asymmetric cell division is subject to system drift.


Assuntos
Divisão Celular Assimétrica/fisiologia , Nematoides/embriologia , Fuso Acromático/fisiologia , Animais , Evolução Biológica , Caenorhabditis/embriologia , Caenorhabditis/genética , Caenorhabditis elegans/embriologia , Divisão Celular/fisiologia , Segregação de Cromossomos/fisiologia , Citocinese/genética , Citocinese/fisiologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/genética , Evolução Molecular , Modelos Biológicos , Fenótipo , Filogenia , Fuso Acromático/genética
4.
Bioinformatics ; 35(13): 2199-2207, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452539

RESUMO

MOTIVATION: RNA sequencing (RNA-Seq) is a widely used approach to obtain transcript sequences in non-model organisms, notably for performing comparative analyses. However, current bioinformatic pipelines do not take full advantage of pre-existing reference data in related species for improving RNA-Seq assembly, annotation and gene family reconstruction. RESULTS: We built an automated pipeline named CAARS to combine novel data from RNA-Seq experiments with existing multi-species gene family alignments. RNA-Seq reads are assembled into transcripts by both de novo and assisted assemblies. Then, CAARS incorporates transcripts into gene families, builds gene alignments and trees and uses phylogenetic information to classify the genes as orthologs and paralogs of existing genes. We used CAARS to assemble and annotate RNA-Seq data in rodents and fishes using distantly related genomes as reference, a difficult case for this kind of analysis. We showed CAARS assemblies are more complete and accurate than those assembled by a standard pipeline consisting of de novo assembly coupled with annotation by sequence similarity on a guide species. In addition to annotated transcripts, CAARS provides gene family alignments and trees, annotated with orthology relationships, directly usable for downstream comparative analyses. AVAILABILITY AND IMPLEMENTATION: CAARS is implemented in Python and Ocaml and is freely available at https://github.com/carinerey/caars. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Análise de Sequência de RNA , Anotação de Sequência Molecular , Filogenia , RNA , Software , Transcriptoma
5.
Mol Biol Evol ; 35(9): 2296-2306, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986048

RESUMO

In the history of life, some phenotypes have been acquired several times independently, through convergent evolution. Recently, lots of genome-scale studies have been devoted to identify nucleotides or amino acids that changed in a convergent manner when the convergent phenotypes evolved. These efforts have had mixed results, probably because of differences in the detection methods, and because of conceptual differences about the definition of a convergent substitution. Some methods contend that substitutions are convergent only if they occur on all branches where the phenotype changed toward the exact same state at a given nucleotide or amino acid position. Others are much looser in their requirements and define a convergent substitution as one that leads the site at which they occur to prefer a phylogeny in which species with the convergent phenotype group together. Here, we suggest to look for convergent shifts in amino acid preferences instead of convergent substitutions to the exact same amino acid. We define as convergent shifts substitutions that occur on all branches where the phenotype changed and such that they correspond to a change in the type of amino acid preferred at this position. We implement the corresponding model into a method named PCOC. We show on simulations that PCOC better recovers convergent shifts than existing methods in terms of sensitivity and specificity. We test it on a plant protein alignment where convergent evolution has been studied in detail and find that our method recovers several previously identified convergent substitutions and proposes credible new candidates.


Assuntos
Substituição de Aminoácidos , Evolução Molecular , Técnicas Genéticas , Modelos Genéticos , Animais , Cyperaceae/genética , Mamíferos/genética
6.
Nucleic Acids Res ; 43(10): 4833-54, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25897113

RESUMO

In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/metabolismo , Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta , Receptores X de Retinoides/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Células-Tronco de Carcinoma Embrionário , Genoma , Camundongos , Motivos de Nucleotídeos , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
7.
BMC Evol Biol ; 15: 129, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134525

RESUMO

BACKGROUND: Only a handful of signaling pathways are major actors of development and responsible for both the conservation and the diversification of animal morphologies. To explain this twofold nature, gene duplication and enhancer evolution were predominantly put forth as tinkering mechanisms whereas the evolution of alternative isoforms has been, so far, overlooked. We investigate here the role of gain and loss of isoforms using Edaradd, a gene of the Ecodysplasin pathway, implicated in morphological evolution. A previous study had suggested a scenario of isoform gain and loss with an alternative isoform (A) newly gained in mammals but secondarily lost in mouse lineage. RESULTS: For a comprehensive view of A and B Edaradd isoforms history during mammal evolution, we obtained sequences for both isoforms in representative mammals and performed in vitro translations to support functional predictions. We showed that the ancestral B isoform is well conserved, whereas the mammal-specific A isoform was lost at least 7 times independently in terminal lineages throughout mammal phylogeny. Then, to gain insights into the functional relevance of this evolutionary pattern, we compared the biological function of these isoforms: i) In cellulo promoter assays showed that they are transcribed from two alternative promoters, only B exhibiting feedback regulation. ii) RT-PCR in various tissues and ENCODE data suggested that B isoform is systematically expressed whereas A isoform showed a more tissue-specific expression. iii) Both isoforms activated the NF-κB pathway in an in cellulo reporter assay, albeit at different levels and with different dynamics since A isoform exhibited feedback regulation at the protein level. Finally, only B isoform could rescue a zebrafish edaradd knockdown. CONCLUSIONS: These results suggest that the newly evolved A isoform enables modulating EDA signaling in specific conditions and with different dynamics. We speculate that during mammal diversification, A isoform regulation may have evolved rapidly, accompanying and possibly supporting the diversity of ectodermal appendages, while B isoform may have ensured essential roles. This study makes the case to pay greater attention to mosaic loss of evolutionarily speaking "young" isoforms as an important mechanism underlying phenotypic diversity and not simply as a manifestation of neutral evolution.


Assuntos
Proteína de Domínio de Morte Associada a Edar/genética , Evolução Molecular , Mamíferos/genética , Isoformas de Proteínas/genética , Transdução de Sinais , Animais , Proteína de Domínio de Morte Associada a Edar/metabolismo , Duplicação Gênica , Mamíferos/classificação , Camundongos , Filogenia , Regiões Promotoras Genéticas , Ratos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
J Exp Zool B Mol Dev Evol ; 324(4): 363-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25387424

RESUMO

Comparative transcriptomics has become an important tool for revisiting many evo-devo questions and exploring new ones, and its importance is likely to increase in the near future, partly because RNA-seq data open many new possibilities. The aim of this opinion piece is twofold. In the first section, we discuss the particularities of transcriptomic studies in evo-devo, focusing mainly on RNA-seq data. The preliminary processing steps (getting coding sequences as well as expression levels) are challenging, because many studied species do not have a sequenced genome. The next step (interpreting expression differences) is also challenging, due to several issues with interpreting expression levels in complex tissues, managing developmental stages and species heterochronies, and the problem of conceptualizing expression differences. In the second section, we discuss some past and possible future applications of transcriptomic approaches (using microarray or RNA-seq) to three major themes in evo-devo: the evolution of the developmental toolkit, the genetic and developmental basis for phenotypic changes, and the general rules of the evolution of development. We believe that conceptual and technical tools are necessary in order to fully exploit the richness of multispecies transcriptomic time-series data.


Assuntos
Evolução Biológica , Desenvolvimento Embrionário/genética , Transcriptoma , Adaptação Fisiológica/genética , Animais , Expressão Gênica , Fenótipo , Análise de Sequência de RNA
9.
Genome Res ; 20(12): 1700-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20978141

RESUMO

Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual process such as repeated DNA breakage and repair. The region is 1.5 kb long and coincides with a gene, ycf4, whose rate of evolution has increased dramatically. The product of ycf4, a photosystem I assembly protein, is more divergent within the single genus Lathyrus than between cyanobacteria and other angiosperms. Moreover, ycf4 has been lost from the chloroplast genome in Lathyrus odoratus and separately in three other groups of legumes. Each of the four consecutive genes ycf4-psaI-accD-rps16 has been lost in at least one member of the legume "inverted repeat loss" clade, despite the rarity of chloroplast gene losses in angiosperms. We established that accD has relocated to the nucleus in Trifolium species, but were unable to find nuclear copies of ycf4 or psaI in Lathyrus. Our results suggest that, as well as accelerating sequence evolution, localized hypermutation has contributed to the phenomenon of gene loss or relocation to the nucleus.


Assuntos
Evolução Molecular , Genes de Plantas/genética , Variação Genética , Genoma de Cloroplastos/genética , Lathyrus/genética , Mutação/genética , Complexo de Proteína do Fotossistema I/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 107(45): 19379-83, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20959416

RESUMO

Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more primitive microRNA families, and 22 unique substitutions to the mature gene products. Reanalysis of morphological data reveals that support for cyclostome paraphyly was based largely on incorrect character coding, and a revised dataset is not decisive on the mono- vs. paraphyly of cyclostomes. Furthermore, we show fundamental conservation of microRNA expression patterns among lamprey, hagfish, and gnathostome organs, implying that the role of microRNAs within specific organs is coincident with their appearance within the genome and is conserved through time. Together, these data support the monophyly of cyclostomes and suggest that the last common ancestor of all living vertebrates was a more complex organism than conventionally accepted by comparative morphologists and developmental biologists.


Assuntos
Peixes/genética , MicroRNAs , Vertebrados/genética , Animais , Genoma , Feiticeiras (Peixe)/genética , Arcada Osseodentária , Lampreias/genética , Filogenia
11.
Science ; 382(6670): 515-516, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917704

RESUMO

Sex differences in gene expression start at puberty and vary across species and organs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Caracteres Sexuais , Animais , Feminino , Masculino , Expressão Gênica , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento
12.
Trends Genet ; 25(12): 519-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19850368

RESUMO

What determines the recombination rate of a gene? Following the observation that, in humans, imprinted genes have unusually high recombination levels, we ask whether increased recombination is seen for other monoallelically expressed genes and, more generally, how transcriptional properties relate to recombination. We find that monoallelically expressed genes do have high crossover rates and discover a striking negative correlation between within-gene crossover rate and expression breadth. We hypothesise that these findings are possibly symptomatic of a more general, adverse relationship between recombination and transcription in the human genome.


Assuntos
Expressão Gênica , Genoma Humano , Recombinação Genética , Transcrição Gênica , Impressão Genômica , Humanos , Especificidade de Órgãos
13.
Dev Biol ; 338(1): 98-106, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19914237

RESUMO

Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.


Assuntos
Padronização Corporal/genética , Cordados/embriologia , Cordados/genética , Gástrula/metabolismo , Proteínas de Homeodomínio/genética , Transdução de Sinais , Tretinoína/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Evolução Molecular , Gástrula/efeitos dos fármacos , Gastrulação/efeitos dos fármacos , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Puromicina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
14.
Evol Dev ; 13(1): 15-27, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21210939

RESUMO

Although numerous studies have emphasized the role of microRNAs (miRNAs) in the control of many different cellular processes, they might also exert a profound effect on the macroevolution of animal body plans. It has been hypothesized that, because miRNAs increase genic precision and are continuously being added to metazoan genomes through geologic time, miRNAs might be instrumental for canalization of development and morphological evolution. Nonetheless, an outstanding question remains: how are new miRNAs constantly evolving? To address this question, we assessed the miRNA complements of four deuterostome species, chosen because of their sequenced genomes and well-resolved phylogeny. Our comparative analysis shows that each of these four species is characterized by a unique repertoire of miRNAs, with few instances of miRNA loss. Moreover, we find that almost half of the miRNAs identified in this study are located in intronic regions of protein coding genes, suggesting that new miRNAs might arise from intronic regions in a process we term intronic exaptation. We also show that miRNAs often occur within cotranscribed clusters, and describe the biological function of one of these conserved clusters, the miR-1/miR-133 cluster. Taken together, our work shows that miRNAs can easily emerge within already transcribed regions of DNA, whether it be introns or preexisting clusters of miRNAs and/or miRNAs and protein coding genes, and because of their regulatory roles, these novel players change the structure of gene regulatory networks, with potential macroevolutionary results.


Assuntos
Evolução Molecular , Invertebrados/genética , MicroRNAs/genética , Petromyzon/genética , Strongylocentrotus purpuratus/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Feminino , Íntrons , Masculino , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
15.
Curr Opin Genet Dev ; 17(6): 505-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18006297

RESUMO

Polyploidy has been widely appreciated as an important force in the evolution of plant genomes, but now it is recognized as a common phenomenon throughout eukaryotic evolution. Insight into this process has been gained by analyzing the plant, animal, fungal, and recently protozoan genomes that show evidence of whole genome duplication (a transient doubling of the entire gene repertoire of an organism). Moreover, comparative analyses are revealing the evolutionary processes that occur as multiple related genomes diverge from a shared polyploid ancestor, and in individual genomes that underwent several successive rounds of duplication. Recent research including laboratory studies on synthetic polyploids indicates that genome content and gene expression can change quickly after whole genome duplication and that cross-genome regulatory interactions are important. We have a growing understanding of the relationship between whole genome duplication and speciation. Further, recent studies are providing insights into why some gene pairs survive in duplicate, whereas others do not.


Assuntos
Evolução Molecular , Especiação Genética , Genoma , Modelos Genéticos , Poliploidia , Animais , Cromossomos de Plantas , Duplicação Gênica , Genoma de Planta , Paramecium/genética
16.
Proc Natl Acad Sci U S A ; 105(24): 8333-8, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18541921

RESUMO

As paleopolyploid genomes evolve, the expression profiles of retained gene pairs are expected to diverge. To examine this divergence process on a large scale in a vertebrate system, we compare Xenopus laevis, which has retained approximately 40% of loci in duplicate after a recent whole-genome duplication (WGD), with its unduplicated relative Silurana (Xenopus) tropicalis. This comparison of ingroup pairs to an outgroup allows the direction of change in expression profiles to be inferred for a set of 1,300 X. laevis pairs, relative to their single orthologs in S. tropicalis, across 11 tissues. We identify 68 pairs in which X. laevis is inferred to have undergone a significant reduction of expression in at least two tissues since WGD. Of these pairs, one-third show evidence of subfunctionalization, with decreases in the expression levels of different gene copies in two different tissues. Surprisingly, we find that genes with slow rates of evolution are particularly prone to subfunctionalization, even when the tendency for highly expressed genes to evolve slowly is controlled for. We interpret this result to be an effect of allopolyploidization. We then compare the outcomes of this WGD with an independent one that happened in the teleost fish lineage. We find that if a gene pair was retained in duplicate in X. laevis, the orthologous pair is more likely to have been retained in duplicate in zebrafish, suggesting that similar factors, among them subfunctionalization, determined which gene pairs survived in duplicate after the two WGDs.


Assuntos
Evolução Molecular , Duplicação Gênica , Variação Genética , Poliploidia , Xenopus laevis/genética , Animais , Sequência de Bases , DNA Complementar/genética , Etiquetas de Sequências Expressas , Peixes/genética , Perfilação da Expressão Gênica , Genes Duplicados , Dados de Sequência Molecular , Análise de Sequência de DNA , Xenopus/genética
17.
Trends Genet ; 23(3): 108-12, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17275132

RESUMO

The whole genome duplication that occurred in ray-finned fish coincided with the radiation of teleost species; consequently, these two phenomena have often been linked. Using the Tetraodon and zebrafish complete genome sequences, we tested a molecular hypothesis that can relate whole genome duplication to speciation in teleosts. We estimate that thousands of genes that remained duplicated when Tetraodon and zebrafish diverged underwent reciprocal loss subsequently in these two species, probably contributing to reproductive isolation between them.


Assuntos
Deleção de Genes , Duplicação Gênica , Genoma , Tetraodontiformes/genética , Peixe-Zebra/genética , Animais , Humanos
18.
Elife ; 92020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32048989

RESUMO

Do developmental systems preferentially produce certain types of variation that orient phenotypic evolution along preferred directions? At different scales, from the intra-population to the interspecific, the murine first upper molar shows repeated anterior elongation. Using a novel quantitative approach to compare the development of two mouse strains with short or long molars, we identified temporal, spatial and functional differences in tooth signaling center activity, that arise from differential tuning of the activation-inhibition mechanisms underlying tooth patterning. By tracing their fate, we could explain why only the upper first molar reacts via elongation of its anterior part. Despite a lack of genetic variation, individuals of the elongated strain varied in tooth length and the temporal dynamics of their signaling centers, highlighting the intrinsic instability of the upper molar developmental system. Collectively, these results reveal the variational properties of murine molar development that drive morphological evolution along a line of least resistance.


Over time species develop random mutations in their genetic sequence that causes their form to change. If this new form increases the survival of a species it will become favored through natural selection and is more likely to get passed on to future generations. But, the evolution of these new traits also depends on what happens during development. Developmental mechanisms control how an embryo progresses from a single cell to an adult organism made of many cells. Mutations that alter these processes can influence the physical outcome of development, and cause a new trait to form. This means that if many different mutations alter development in a similar way, this can lead to the same physical change, making it 'easy' for a new trait to repeatedly occur. Most of the research has focused on finding the mutations that underlie repeated evolution, but rarely on identifying the role of the underlying developmental mechanisms. To bridge this gap, Hayden et al. investigated how changes during development influence the shape and size of molar teeth in mice. In some wild species of mice, the front part of the first upper molar is longer than in other species. This elongation, which is repeatedly found in mice from different islands, likely came from developmental mechanisms. Tooth development in mice has been well-studied in the laboratory, and Hayden et al. started by identifying two strains of laboratory mice that mimic the teeth seen in their wild cousins, one with elongated upper first molars and another with short ones. Comparing how these two strains of mice developed their elongated or short teeth revealed key differences in the embryonic structures that form the upper molar and cause it to elongate. Further work showed that variations in these embryonic structures can even cause mice that are genetically identical to have longer or shorter upper first molars. These findings show how early differences during development can lead to small variations in form between adult species of mice. This study highlights how studying developmental differences as well as genetic sequences can further our understanding of how different species evolved.


Assuntos
Variação Biológica da População/fisiologia , Dente Molar/anatomia & histologia , Dente Molar/crescimento & desenvolvimento , Erupção Dentária/fisiologia , Animais , Evolução Biológica , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Fenótipo , Gravidez , Transdução de Sinais
19.
Evol Dev ; 11(4): 422-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19601975

RESUMO

Metazoans are largely made of repeated parts, and metazoan evolution is marked by changes in the number of these parts, called meristic evolution. Understanding the mechanisms associated with meristic changes is thus a critical issue to evolutionary developmental biology. Palatal rugae are sensory ridges regularly arranged on the hard palate of mammals. They develop sequentially following mesio-distal growth of the palate, and activation-inhibition mechanisms very likely control spacing and timing of this sequential addition. In this study, we characterized trends in rugae number evolution among muroid rodents, showing that most species display 8+/-1 rugae, changes by one being very frequent in the phylogeny. We then compared development of three muroid species: mouse (nine rugae), rat (eight), and golden hamster (seven). We showed that palatal growth rate, spacing, and addition rate in mouse/rat were remarkably similar (with respect to the embryo size difference), and that increase to nine rugae in mouse is achieved by postponing the end of the addition process (hypermorphosis). Such a heterochronic shift may be typical of +/-1 variations observed among muroid rodents. In contrast, decrease to seven rugae in golden hamster is attributed to early growth termination (progenesis) of the palate, which correlates with the severe shortening of gestation in this species. Our results provide an experimental support to the intuitive view that heterochronies are especially relevant to meristic evolution of traits that rely on a sequential addition process. We also interpret our results in the light of developmental constraints specifically linked to this kind of process.


Assuntos
Evolução Biológica , Desenvolvimento Maxilofacial , Palato/anatomia & histologia , Animais , Cricetinae , Camundongos , Palato/embriologia , Filogenia , Ratos
20.
Proc Biol Sci ; 276(1677): 4315-22, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19755470

RESUMO

Both the monophyly and inter-relationships of the major annelid groups have remained uncertain, despite intensive research on both morphology and molecular sequences. Morphological cladistic analyses indicate that Annelida is monophyletic and consists of two monophyletic groups, the clitellates and polychaetes, whereas molecular phylogenetic analyses suggest that polychaetes are paraphyletic and that sipunculans are crown-group annelids. Both the monophyly of polychaetes and the placement of sipunculans within annelids are in conflict with the annelid fossil record--the former because Cambrian stem taxa are similar to modern polychaetes in possessing biramous parapodia, suggesting that clitellates are derived from polychaetes; the latter because although fossil sipunculans are known from the Early Cambrian, crown-group annelids do not appear until the latest Cambrian. Here we apply a different data source, the presence versus absence of specific microRNAs--genes that encode approximately 22 nucleotide non-coding regulatory RNAs--to the problem of annelid phylogenetics. We show that annelids are monophyletic with respect to sipunculans, and polychaetes are paraphyletic with respect to the clitellate Lumbricus, conclusions that are consistent with the fossil record. Further, sipunculans resolve as the sister group of the annelids, rooting the annelid tree, and revealing the polarity of the morphological change within this diverse lineage of animals.


Assuntos
Anelídeos/classificação , Anelídeos/genética , Fósseis , MicroRNAs/genética , Filogenia , Animais , Anelídeos/anatomia & histologia , Sequência de Bases , Northern Blotting , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA