Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(5): 1097-1111.e12, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32442406

RESUMO

The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.


Assuntos
Desmidiales/genética , Desmidiales/metabolismo , Embriófitas/genética , Evolução Biológica , Parede Celular/genética , Parede Celular/metabolismo , Ecossistema , Evolução Molecular , Filogenia , Plantas
2.
Plant Physiol ; 194(1): 258-273, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37706590

RESUMO

The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-ß-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.


Assuntos
Cuscuta , Parasitos , Solanum lycopersicum , Solanum , Animais , Cuscuta/genética , Interações Hospedeiro-Parasita/genética , Solanum lycopersicum/genética , Solanum/genética , Expressão Gênica
3.
Plant Cell ; 33(5): 1472-1491, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33638637

RESUMO

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Sequência Conservada , Embriófitas/enzimologia , Evolução Molecular , Acilação , Aciltransferases/deficiência , Biocatálise , Briófitas/enzimologia , Embriófitas/genética , Regulação Enzimológica da Expressão Gênica , Genes de Plantas , Cinética , Modelos Biológicos , Fenóis/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380735

RESUMO

Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening-specific LATERAL ORGAN BOUNDRIES (LOB) TF, SlLOB1, up-regulates a suite of cell wall-associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 (EXP1) are strongly suppressed in SlLOB1 RNA interference lines, while EXP1 is induced in SlLOB1-overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, SlLOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.


Assuntos
Parede Celular/fisiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Carotenoides , Etilenos/metabolismo , Armazenamento de Alimentos , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
5.
Plant Cell ; 32(10): 3188-3205, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32753430

RESUMO

Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.


Assuntos
Frutas/citologia , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Solanum lycopersicum/citologia , Sistemas CRISPR-Cas , Ciclo Celular/genética , Diferenciação Celular , Tamanho Celular , Parede Celular/genética , Parede Celular/metabolismo , Endorreduplicação , Frutas/genética , Frutas/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Edição de Genes , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , Pectinas/genética , Pectinas/metabolismo , Fenótipo , Células Vegetais , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ploidias
6.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895244

RESUMO

Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a ß-1,3 glucan, accumulates at later stages of cell plate development, presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, because it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, Penium margaritaceum Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition of callose deposition by endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum The evolutionary implications of cytokinetic callose in this unicellular zygnematopycean alga is discussed in the context of the conquest of land by plants.This article has an associated First Person interview with the first author of the paper.


Assuntos
Carofíceas , Citocinese , Parede Celular , Glucanos
7.
Plant Biotechnol J ; 18(1): 106-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131540

RESUMO

Tomato (Solanum lycopersicum) fruit ripening is regulated co-operatively by the action of ethylene and a hierarchy of transcription factors, including RIPENING INHIBITOR (RIN) and NON-RIPENING (NOR). Mutations in these two genes have been adopted commercially to delay ripening, and accompanying textural deterioration, as a means to prolong shelf life. However, these mutations also affect desirable traits associated with colour and nutritional value, although the extent of this trade-off has not been assessed in detail. Here, we evaluated changes in tomato fruit pericarp primary metabolite and carotenoid pigment profiles, as well as the dynamics of specific associated transcripts, in the rin and nor mutants during late development and postharvest storage, as well of those of the partially ripening delayed fruit ripening (dfd) tomato genotype. These profiles were compared with those of the wild-type tomato cultivars Ailsa Craig (AC) and M82. We also evaluated the metabolic composition of M82 fruit ripened on or off the vine over a similar period. In general, the dfd mutation resulted in prolonged firmness and maintenance of quality traits without compromising key metabolites (sucrose, glucose/fructose and glucose) and sectors of intermediary metabolism, including tricarboxylic acid cycle intermediates. Our analysis also provided insights into the regulation of carotenoid formation and highlighted the importance of the polyamine, putrescine, in extending fruit shelf life. Finally, the metabolic composition analysis of M82 fruit ripened on or off the vine provided insights into the import into fruit of compounds, such as sucrose, during ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Solanum lycopersicum/genética , Etilenos , Frutas/química , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas
8.
J Exp Bot ; 71(11): 3323-3339, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974570

RESUMO

The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.


Assuntos
Carofíceas , Clorófitas , Parede Celular , Matriz Extracelular , Complexo de Golgi , Polissacarídeos
9.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980530

RESUMO

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Assuntos
Aciltransferases/metabolismo , Parede Celular/metabolismo , Nicotiana/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiologia , Parede Celular/ultraestrutura , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estômatos de Plantas/metabolismo , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Transcriptoma/genética
10.
Biol Lett ; 13(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615350

RESUMO

Long-distance migrants are particularly recognized for the distances covered on migration, yet little is known about the distances they cover during the rest of the year. GPS-tracks of 29 Montagu's harriers from breeding areas in France, The Netherlands and Denmark showed that harriers fly between 35 653 and 88 049 km yr-1, of which on average only 28.5% is on migration. Mean daily distances during migration were 296 km d-1 in autumn and 252 km d-1 in spring. Surprisingly, males' daily distances during breeding (217 km d-1) were close to those during migration, whereas breeding females moved significantly less (101 km d-1) than males. In terms of flight distance, the breeding season seemed nearly as demanding as migration periods for males. During the six winter months, both sexes moved less (114 and 128 km d-1 for females and males, respectively) than during migration. Harriers therefore covered shorter daily distances during winter which might allow birds to compensate for the more demanding phases of migration and breeding.


Assuntos
Falconiformes , Migração Animal , Animais , Dinamarca , Feminino , França , Masculino , Países Baixos
11.
Plant J ; 77(3): 339-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24308430

RESUMO

The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Desmidiales/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Agrobacterium/genética , Evolução Biológica , Hidrolases de Éster Carboxílico/genética , Parede Celular/metabolismo , Carofíceas/genética , Clorófitas/genética , Clorófitas/metabolismo , Desmidiales/metabolismo , Desmidiales/ultraestrutura , Embriófitas/genética , Biblioteca Gênica , Marcação de Genes , Genes Reporter , Glucosiltransferases/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Interferência de RNA , Genética Reversa , Transformação Genética , Transgenes
12.
BMC Plant Biol ; 15: 56, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25848828

RESUMO

BACKGROUND: While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. RESULTS: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. CONCLUSIONS: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.


Assuntos
Anticorpos Monoclonais/metabolismo , Parede Celular/metabolismo , Gleiquênias/classificação , Gleiquênias/metabolismo , Especificidade de Órgãos , Filogenia , Polissacarídeos/metabolismo , Epitopos/metabolismo , Gleiquênias/citologia , Técnica Indireta de Fluorescência para Anticorpo , Galactanos/metabolismo , Glucanos , Mananas/metabolismo , Análise em Microsséries , Pectinas/metabolismo , Floema/metabolismo , Extratos Vegetais/metabolismo , Polissacarídeo-Liases/metabolismo , Xilanos
13.
New Phytol ; 207(3): 893-904, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900772

RESUMO

Shoot apical meristem (SAM) structure varies markedly within the land plants. The SAMs of many seedless vascular plants contain a conspicuous inverted, pyramidal cell called the apical cell (AC), which is unidentified in angiosperms. In this study, we use transcriptomic sequencing with precise laser microdissections of meristem subdomains to define the molecular signatures of anatomically distinct zones from the AC-type SAMs of a lycophyte (Selaginella moellendorffii) and a monilophyte (Equisetum arvense). The two model species for this study represent vascular plant lineages that diverged > 400 million yr ago. Our data comprise comprehensive molecular signatures for the distinct subdomains within AC-type SAMs, an anatomical anomaly whose functional significance has been debated in the botanical literature for over two centuries. Moreover, our data provide molecular support for distinct gene expression programs between the AC-type SAMs of Selaginella and Equisetum, as compared with the SAM transcriptome of the angiosperm maize. The results are discussed in light of the functional significance and evolutionary success of the AC-type SAM within the embryophytes.


Assuntos
Embriófitas/citologia , Embriófitas/genética , Meristema/citologia , Meristema/genética , Filogenia , Equisetum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Microdissecção e Captura a Laser , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selaginellaceae/genética , Transcrição Gênica , Regulação para Cima/genética
14.
Plant Physiol ; 165(1): 105-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24652345

RESUMO

The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants.


Assuntos
Parede Celular/metabolismo , Carofíceas/citologia , Carofíceas/metabolismo , Pectinas/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Celulose/metabolismo , Carofíceas/efeitos dos fármacos , Carofíceas/ultraestrutura , Ácido Edético/análogos & derivados , Ácido Edético/farmacologia , Epitopos/metabolismo , Análise em Microsséries , Modelos Biológicos , Pectinas/química , Pectinas/imunologia , Poligalacturonase/metabolismo , Polissacarídeo-Liases/metabolismo
15.
J Exp Bot ; 65(2): 465-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285826

RESUMO

Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Clorófitas/citologia , Clorófitas/metabolismo , Microtúbulos/metabolismo , Pectinas/metabolismo , Anticorpos Monoclonais/metabolismo , Forma Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Clorófitas/crescimento & desenvolvimento , Clorófitas/ultraestrutura , Dinitrobenzenos/farmacologia , Glicosídeo Hidrolases/farmacologia , Imuno-Histoquímica , Análise em Microsséries , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Polissacarídeos/metabolismo , Sulfanilamidas/farmacologia
16.
Planta ; 237(3): 739-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117392

RESUMO

A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.


Assuntos
Arabinose/metabolismo , Evolução Biológica , Biopolímeros/metabolismo , Parede Celular/metabolismo , Craterostigma/citologia , Craterostigma/fisiologia , Dessecação , Análise por Conglomerados , Análise em Microsséries , Folhas de Planta/química , Análise de Componente Principal , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Plant J ; 68(2): 201-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21707800

RESUMO

Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.


Assuntos
Evolução Biológica , Parede Celular/química , Carofíceas/química , Lignina/análise , Polissacarídeos/análise , Anticorpos Monoclonais , Parede Celular/genética , Parede Celular/ultraestrutura , Celulose/análise , Carofíceas/genética , Carofíceas/ultraestrutura , Ácido Edético/análogos & derivados , Ácido Edético/química , Embriófitas/química , Embriófitas/genética , Embriófitas/ultraestrutura , Epitopos , Imunofluorescência , Genes de Plantas/genética , Glicoproteínas/análise , Análise em Microsséries , Pectinas/análise , Filogenia , Plantas , Hidróxido de Sódio/química
18.
Front Plant Sci ; 11: 1032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733522

RESUMO

Pectins represent one of the main components of the plant primary cell wall. These polymers have critical roles in cell expansion, cell-cell adhesion and response to biotic stress. We present a comprehensive screening of pectin architecture of the unicellular streptophyte, Penium margaritaceum. Penium possesses a distinct cell wall whose outer layer consists of a lattice of pectin-rich fibers and projections. In this study, cells were exposed to a variety of physical, chemical and enzymatic treatments that directly affect the cell wall, especially the pectin lattice. Correlative analyses of pectin lattice perturbation using field emission scanning electron microscopy, confocal laser scanning microscopy, and transmission electron microscopy demonstrate that pectin lattice microarchitecture is both highly sensitive and malleable.

19.
Curr Opin Plant Biol ; 55: 11-20, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203682

RESUMO

Cutin and suberin are hydrophobic lipid biopolyester components of the cell walls of specialized plant tissue and cell-types, where they facilitate adaptation to terrestrial habitats. Many steps in their biosynthetic pathways have been characterized, but the basis of their spatial deposition and precursor trafficking is not well understood. Members of the GDSL lipase/esterase family catalyze cutin polymerization, and candidate proteins have been proposed to mediate interactions between cutin or suberin and other wall components. Comparative genomic studies of charophyte algae and early diverging land plants, combined with knowledge of the biosynthesis, trafficking and assembly mechanisms, suggests an origin for the capacity to secrete waxes, as well as aliphatic and phenolic compounds before the first colonization of true terrestrial habitats.


Assuntos
Embriófitas , Lipídeos de Membrana , Parede Celular , Lipídeos
20.
Environ Int ; 137: 105582, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086081

RESUMO

Here we investigate if lead may be a contributing factor to the observed population decline in a Baltic colony of incubating eiders (Somateria mollissima). Body mass and blood samples were obtained from 50 incubating female eiders at the Baltic breeding colony on Christiansø during spring 2017 (n = 27) and 2018 (n = 23). All the females were sampled twice during early (day 4) and late (day 24) incubation. The full blood was analysed for lead to investigate if the concentrations exceeded toxic thresholds or changed over the incubation period due to remobilisation from bones and liver tissue. Body mass, hatch date and number of chicks were also analysed with respect to lead concentrations. The body mass (mean ± SD g) increased significantly in the order: day 24 in 2018 (1561 ± 154 g) < day 24 in 2017 (1618 ± 156 g) < day 4 in 2018 (2183 ± 140 g) < day 4 in 2017 (2359 ± 167 g) (all p < 0.001). The lead concentrations increased significantly in the opposite order i.e. day 4 in 2017 (41.7 ± 67.1 µg/L) < day 24 in 2017 (55.4 ± 66.8 µg/L) < day 4 in 2018 (177 ± 196 µg/L) < day 24 in 2018 (258 ± 243) (all p < 0.001). From day 4 to 24, the eider females had a 1.33-fold increase in blood lead concentrations in 2017 and a 1.46-fold increase in 2018. Three of the birds (13%) sampled in 2018 had lead concentrations that exceeded concentrations of clinical poisoning (500 µg/L) and eleven (48%) had concentrations that exceeded the threshold for subclinical poisoning (200 µg/L). In 2017, none of the birds exceeded the high toxic threshold of clinical poisoning while only one (4%) exceeded the lower threshold for subclinical poisoning. Three of the birds (6%) sampled in 2018 had lead concentrations that exceeded those of clinical poisoning while 12 birds (24%) resampled in both years exceeded the threshold for subclinical poisoning. In addition, lead concentrations and body mass on day 4 affected hatch date positively in 2018 (both p < 0.03) but not in 2017. These results show that bioavailable lead in bone and liver tissue pose a threat to the health of about 25% of the incubating eiders sampled. This is particularly critical because eiders are largely capital breeding which means that incubating eiders are in an energetically stressed state. The origin of lead in incubating eiders in the Christiansø colony is unknown and it remains an urgent priority to establish the source, prevalence and mechanism for uptake. The increase in lead from day 4 to day 24 is due to bone and liver remobilization; however, the additional lead source(s) on the breeding grounds needs to be identified. Continued investigations should determine the origin, uptake mechanisms and degree of exposure to lead for individual birds. Such research should include necropsies, x-ray, lead isotope and stable C and N isotope analyses to find the lead sources(s) in the course of the annual cycle and how it may affect the population dynamics of the Christiansø colony which reflects the ecology of the Baltic eiders being suitable for biomonitoring the overall flyway.


Assuntos
Patos , Chumbo , Poluentes da Água , Animais , Organismos Aquáticos , Aves , Feminino , Chumbo/sangue , Dinâmica Populacional , Estações do Ano , Poluentes da Água/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA