Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(8): e56754, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278352

RESUMO

The use of beneficial microbes to mitigate drought stress tolerance of plants is of great potential albeit little understood. We show here that a root endophytic desert bacterium, Pseudomonas argentinensis strain SA190, enhances drought stress tolerance in Arabidopsis. Transcriptome and genetic analysis demonstrate that SA190-induced root morphogenesis and gene expression is mediated via the plant abscisic acid (ABA) pathway. Moreover, we demonstrate that SA190 primes the promoters of target genes in an epigenetic ABA-dependent manner. Application of SA190 priming on crops is demonstrated for alfalfa, showing enhanced performance under drought conditions. In summary, a single beneficial root bacterial strain can help plants to resist drought conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Resistência à Seca , Arabidopsis/genética , Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética
2.
BMC Genomics ; 25(1): 672, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969999

RESUMO

The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.


Assuntos
Avicennia , Avicennia/microbiologia , Genoma Bacteriano , Genômica , Rizosfera , Salinidade , Filogenia , Desenvolvimento Vegetal , Sideróforos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772809

RESUMO

Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.


Assuntos
Enterobacter/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/metabolismo , Enxofre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Enterobacter/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Tolerantes a Sal/genética , Estresse Fisiológico/genética
4.
Arch Microbiol ; 205(9): 307, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580455

RESUMO

Isoptericola sp. AK164 is a Gram-positive, aerobic bacterial genus from the family Promicromonosporaceae, isolated from the root rhizosphere of Avicennia marina. AK164 significantly enhanced the growth of the Arabidopsis thaliana plant under normal and saline conditions. These bacteria can produce ACC deaminase and several enzymes playing a role in carbohydrate hydrolyses, such as cellulose, hemicellulose, and chitin degradation, which may contribute to plant growth, salt tolerance, and stress elevation. The genome sequence AK164 has a single circular chromosome of approximately 3.57 Mbp with a GC content of 73.53%. A whole genome sequence comparison of AK164 with type strains from the same genus, using digital DNA-DNA hybridization and average nucleotide identity calculations, revealed that AK164 might potentially belong to a new species of Isoptericola. Genome data and biochemical analyses indicate that AK164 could be a potential biostimulant for improving agriculture in submerged saline land.


Assuntos
Actinomycetales , Avicennia , Avicennia/genética , Avicennia/microbiologia , Rizosfera , Oceano Índico , Actinomycetales/genética , Bactérias/genética , Análise de Sequência , DNA , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ácidos Graxos/química
5.
EMBO Rep ; 22(3): e51049, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426785

RESUMO

Global warming has become a critical challenge to food security, causing severe yield losses of major crops worldwide. Conventional and transgenic breeding strategies to enhance plant thermotolerance are laborious and expensive. Therefore, the use of beneficial microbes could be an alternative approach. Here, we report that the root endophyte Enterobacter sp. SA187 induces thermotolerance in wheat in the laboratory as well as in open-field agriculture. To unravel the molecular mechanisms, we used Arabidopsis thaliana as model plant. SA187 reprogramed the Arabidopsis transcriptome via HSFA2-dependent enhancement of H3K4me3 levels at heat stress memory gene loci. Unlike thermopriming, SA187-induced thermotolerance is mediated by ethylene signaling via the transcription factor EIN3. In contrast to the transient chromatin modification by thermopriming, SA187 induces constitutive H3K4me3 modification of heat stress memory genes, generating robust thermotolerance in plants. Importantly, microbial community composition of wheat plants in open-field agriculture is not influenced by SA187, indicating that beneficial microbes can be a powerful tool to enhance thermotolerance of crops in a sustainable manner.


Assuntos
Arabidopsis/fisiologia , Cromatina/genética , Endófitos/fisiologia , Raízes de Plantas/microbiologia , Termotolerância , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Termotolerância/genética
6.
Environ Microbiol ; 23(10): 6223-6240, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34472197

RESUMO

Although many endophytic plant growth-promoting rhizobacteria have been identified, relatively little is still known about the mechanisms by which they enter plants and promote plant growth. The beneficial endophyte Enterobacter sp. SA187 was shown to maintain the productivity of crops in extreme agricultural conditions. Here we present that roots of its natural host (Indigofera argentea), alfalfa, tomato, wheat, barley and Arabidopsis are all efficiently colonized by SA187. Detailed analysis of the colonization process in Arabidopsis showed that colonization already starts during seed germination, where seed-coat mucilage supports SA187 proliferation. The meristematic zone of growing roots attracts SA187, allowing epiphytic colonization in the elongation zone. Unlike primary roots, lateral roots are significantly less epiphytically colonized by SA187. Root endophytic colonization was found to occur by passive entry of SA187 at lateral-root bases. However, SA187 also actively penetrates the root epidermis by enzymatic disruption of plant cell wall material. In contrast to roots, endophytic colonization of shoots occurs via stomata, whereby SA187 can actively re-open stomata similarly to pathogenic bacteria. In summary, several entry strategies were identified that allow SA187 to establish itself as a beneficial endophyte in several plant species, supporting its use as a plant growth-promoting bacterium in agriculture systems.


Assuntos
Arabidopsis , Enterobacter , Arabidopsis/microbiologia , Produtos Agrícolas , Endófitos/genética , Enterobacter/genética , Raízes de Plantas/microbiologia
7.
Curr Microbiol ; 78(4): 1135-1141, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33683416

RESUMO

Cellulomonas sp. JZ18 is a gram-positive, rod shaped bacterium that was previously isolated from the root endosphere of the perennial desert tussock-grass Panicum turgidum. Genome coverage of PacBio sequencing was approximately 199X. Genome assembly generated a single chromosome of 7,421,843 base pairs with a guanine-cytosine (GC) content of 75.60% with 3240 protein coding sequences, 361 pseudo genes, three ribosomal RNA operons, three non-coding RNAs and 45 transfer RNAs. Comparison of JZ18's genome with type strains from the same genus, using digital DNA-DNA hybridization and average nucleotide identity calculations, revealed that JZ18 might potentially belong to a new species. Functional analysis revealed the presence of genes that may complement previously observed biochemical and plant phenotypes. Furthermore, the presence of a number of enzymes could be of potential use in industrial processes as biocatalysts. Genome sequencing and analysis, coupled with comparative genomics, of endophytic bacteria for their potential plant growth promoting activities under different soil conditions will accelerate the knowledge and applications of biostimulants in sustainable agriculture.


Assuntos
Cellulomonas , Panicum , Bactérias , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
8.
PLoS Genet ; 14(3): e1007273, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29554117

RESUMO

Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Enterobacter/fisiologia , Etilenos/metabolismo , Metionina/análogos & derivados , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Metionina/biossíntese , Metionina/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo
9.
J Exp Bot ; 71(13): 3878-3901, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32157287

RESUMO

Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.


Assuntos
Inoculantes Agrícolas , Agricultura , Fertilizantes , Desenvolvimento Vegetal , Plantas , Microbiologia do Solo
10.
Arch Microbiol ; 202(6): 1563-1569, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32172289

RESUMO

Cellulosimicrobium sp. JZ28, a root endophytic bacterium from the desert plant Panicum turgidum, was previously identified as a plant growth-promoting bacterium. The genome of JZ28 consists of a 4378,193 bp circular chromosome and contains 3930 CDSs with an average GC content of 74.5%. Whole-genome sequencing analysis revealed that JZ28 was closely related to C. aquatile 3 bp. The genome harbors genes responsible for protection against oxidative, osmotic and salinity stresses, such as the production of osmoprotectants. It also contains genes with a role in the production of volatiles, such as hydrogen sulfide, which promote biotic and abiotic stress tolerance in plants. The presence of three copies of chitinase genes indicates a possible role of JZ28 as biocontrol agent against fungal pathogens, while a number of genes for the degradation of plant biopolymers indicates potential application in industrial processes. Genome sequencing and mining of culture-dependent collections of bacterial endophytes from desert plants provide new opportunities for biotechnological applications.


Assuntos
Actinobacteria , Endófitos/isolamento & purificação , Panicum/microbiologia , Desenvolvimento Vegetal/fisiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Genoma Bacteriano/genética , Plantas/microbiologia , Estresse Fisiológico
11.
Curr Microbiol ; 77(6): 1097-1103, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32016548

RESUMO

Paenibacillus sp. JZ16 is a gram-positive, rod-shaped, motile root endophytic bacterium of the pioneer desert halophytic plant Zygophyllum simplex. JZ16 was previously shown to promote salinity stress tolerance in Arabidopsis thaliana and possesses a highly motile phenotype on nutrient agar. JZ16 genome sequencing using PacBio generated 82,236 reads with a mean insert read length of 11,432 bp and an estimated genome coverage of 127X, resulting in a chromosome of 7,421,843 bp with a GC content of 49.25% encoding 6710 proteins, 8 rRNA operons, 117 ncRNAs and 73 tRNAs. Whole-genome sequencing analysis revealed a potentially new species for JZ16. Functional analysis revealed the presence of a number of enzymes involved in the breakdown of plant-based polymers. JZ16 could be of potential use in agricultural applications for promoting biotic and abiotic stress tolerance and for biotechnological processes (e.g., as biocatalysts for biofuel production). The culture-dependent collection of bacterial endophytes from desert plants combined with genome sequence mining provides new opportunities for industrial applications.


Assuntos
Endófitos/fisiologia , Genoma Bacteriano/genética , Paenibacillus/fisiologia , Zygophyllum/crescimento & desenvolvimento , Zygophyllum/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Composição de Bases , Sequência de Bases , DNA Bacteriano/genética , Clima Desértico , Endófitos/classificação , Endófitos/genética , Paenibacillus/classificação , Paenibacillus/genética , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia
12.
Mol Plant Microbe Interact ; 32(2): 208-216, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30070615

RESUMO

Symbiotic nitrogen fixation between legumes and rhizobia involves a coordinated expression of many plant and bacterial genes as well as finely tuned metabolic activities of micro- and macrosymbionts. In spite of such complex interactions, symbiotic proficiency remains a resilient process, with host plants apparently capable of compensating for some deficiencies in rhizobia. What controls nodule homeostasis is still poorly understood and probably varies between plant species. In this respect, the promiscuous Sinorhizobium (Ensifer) fredii strain NGR234 has become a model to assess the relative contribution of single gene products to many symbioses. Here, we describe how a deletion in nifQ of NGR234 (strain NGRΔnifQ) makes nodules of Vigna unguiculata, V. radiata, and Macroptilium atropurpureum but not of the mimisoid tree Leucaena leucocephala, purple-red. This peculiar dark-nodule phenotype did not necessarily correlate with a decreased proficiency of NGRΔnifQ but coincided with a 20-fold or more accumulation of coproporphyrin III and uroporphyrin III in V. unguiculata nodules. Porphyrin accumulation was not restricted to plant cells infected with bacteroids but also extended to the nodule cortex. Nodule metal-homeostasis was altered but not sufficiently to prevent assembly and functioning of nitrogenase. Although the role of NifQ in donating molybdenum during assembly of nitrogenase cofactor FeMo-co makes it essential in free-living diazotrophs, our results highlight the dispensability of NifQ in many legume species.


Assuntos
Proteínas de Bactérias , Metais , Nitrogênio , Porfirinas , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homeostase , Metais/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Porfirinas/metabolismo
14.
Food Microbiol ; 55: 112-22, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26742622

RESUMO

Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter.


Assuntos
Ácido Acético/metabolismo , Bebidas Alcoólicas/microbiologia , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/química , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Poliacrilamida , Fermentação , Dados de Sequência Molecular , Filogenia , Proteômica
15.
Microbiome ; 12(1): 11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233870

RESUMO

BACKGROUND: Fonio (Digitaria exilis), an orphan millet crop, is the oldest indigenous crop in West Africa. Although the yield is low due to pre-domestication characteristics, the quick maturation time, drought tolerance, and the ability to thrive on poor soils make fonio a climate-smart crop. Being holobionts, plants evolve in close interaction with microbial partners, which is crucial for plant phenology and fitness. As seeds are the bottleneck of vertically transmitting plant microbiota, we proposed to unravel the seed microbiome of the under-domesticated and resilient crop fonio. Our study investigated the bacterial seed endophyte diversity across 126 sequenced fonio accessions from distinct locations in West Africa. We conducted a correlation study of the structures and functions of the seed-associated microbiomes with the native geo-climate and soil structure data. We also performed Genome-wide association studies (GWAS) to identify genetic loci associated with seed endophyte diversity. RESULT: We report that fonio millet has diverse heritable seed endophytic taxa. We analyzed the seed microbiomes of 126 fonio accessions and showed that despite the diversity of microbiomes from distinct geographical locations, all fonio genetic groups share a core microbiome. In addition, we observed that native soil composition, geo-climatic factors, and host genotype correlate with the seed microbiomes. GWAS analysis of genetic loci associated with endophyte seed bacterial diversity identified fonio SNPs associated with genes functioning in embryo development and stress/defense response. CONCLUSION: Analysis of the seed endophyte of the climate-smart crop fonio indicated that despite possessing a heritable core microbiome, native conditions may shape the overall fonio seed microbiomes in different populations. These distinct microbiomes could play important roles in the adaptation of fonio to different environmental conditions. Our study identified the seed microbiome as a potential target for enhancing crop resilience to climate stress in a sustainable way. Video Abstract.


Assuntos
Microbiota , Solo , Solo/química , Estudo de Associação Genômica Ampla , Sementes/genética , Sementes/microbiologia , Microbiota/genética , Plantas , Endófitos , Genótipo , Bactérias/genética
16.
Trends Plant Sci ; 28(11): 1218-1221, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741740

RESUMO

To limit the effects of global warming, arid lands, which constitute approximately one-third of terrestrial surfaces and are not utilized for agriculture, could serve as an effective method for long-term carbon (C) storage. We propose that soil-plant-microbiome engineering with oxalogenic plants and oxalotrophic microbes could facilitate C sequestration on a global scale.


Assuntos
Agricultura , Sequestro de Carbono , Solo , Plantas , Carbono
17.
Front Plant Sci ; 14: 1192818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528983

RESUMO

Introduction: Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods: Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion: The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.

18.
Appl Environ Microbiol ; 78(20): 7476-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865066

RESUMO

Cupriavidus taiwanensis forms proficient symbioses with a few Mimosa species. Inactivation of a type III protein secretion system (T3SS) had no effect on Mimosa pudica but allowed C. taiwanensis to establish chronic infections and fix nitrogen in Leucaena leucocephala. Unlike what was observed for other rhizobia, glutamate rather than plant flavonoids mediated transcriptional activation of this atypical T3SS.


Assuntos
Sistemas de Secreção Bacterianos , Cupriavidus/fisiologia , Fabaceae/microbiologia , Simbiose , Cupriavidus/metabolismo , Técnicas de Inativação de Genes , Glutamatos/metabolismo , Proteínas , Transcrição Gênica , Ativação Transcricional
19.
Mol Microbiol ; 71(1): 92-106, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19019163

RESUMO

A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized. NGR234 possesses three open reading frames potentially encoding homologues of effector proteins from pathogenic bacteria. NopJ, NopM and NopT are secreted by the T3SS of NGR234. All three can have negative effects on the interaction with legumes, but NopM and NopT also stimulate nodulation on certain plants. NopT belongs to a family of pathogenic effector proteases, typified by the avirulence protein, AvrPphB. The protease domain of NopT is required for its recognition and a subsequent strong inhibition in infection of Crotalaria juncea. In contrast, the negative effects of NopJ are relatively minor when compared with those induced by its Avr homologues. Thus NGR234 uses a mixture of rhizobial-specific and pathogen-derived effector proteins. Whereas some legumes recognize an effector as potentially pathogen-derived, leading to a block in the infection process, others perceive both the negative- and positive-acting effectors concomitantly. It is this equilibrium of effector action that leads to modulation of symbiotic development.


Assuntos
Proteínas de Bactérias/metabolismo , Fabaceae/microbiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Regulação Bacteriana da Expressão Gênica , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Rhizobium/genética , Rhizobium/metabolismo , Especificidade da Espécie
20.
Can J Anaesth ; 57(1): 50-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19882198

RESUMO

BACKGROUND: Our previous work has demonstrated that treatment with isoflurane has a preconditioning-like inhibitory effect on superoxide production (SOP) by polymorphonuclear neutrophils. The current objectives were to determine persistency of this effect and to clarify where in the signalling pathway this inhibition of SOP occurred. The latter was accomplished using two receptor-dependent neutrophil agonists, platelet activating factor (PAF) and formyl-methionyl-leucyl-phenylalanine (fMLP), and two receptor-independent neutrophil stimuli, the protein-kinase C stimulator, phorbol myristate acetate (PMA), and the calcium ionophore, A23187. METHODS: Arterial blood samples were obtained from eight dogs under baseline condition (conscious state), during isoflurane (1 MAC) administration, and 24 and 48 hr post-isoflurane (also in conscious state). Neutrophils were isolated and stimulated with 1 muM concentrations of PAF, fMLP, PMA, and A23187. SOP was measured spectrophotometrically. RESULTS: Isoflurane administration caused (1) an approximate 50% decrease in SOP during PAF or fMLP (P < 0.01 vs baseline), which remained evident from 24 to 48 hr following isoflurane; (2) an initial 29% decrease in SOP during PMA (P < 0.05 vs baseline), which returned to baseline by 24 hr following isoflurane; and (3) no change in SOP during A23187 (P > 0.05 vs baseline). CONCLUSIONS: Isoflurane administration caused prolonged (from 24 to 48 hr) decreases in agonist-induced SOP by neutrophils. This effect involved inhibition at site(s) in the signalling pathway upstream from protein kinase C. The current findings suggest that the intraoperative use of isoflurane may result in an extended impairment to the antibacterial host defense mechanism and that neutrophil inhibition may play a role in the delayed tissue protection afforded by treatment with volatile anesthetics.


Assuntos
Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Neutrófilos/efeitos dos fármacos , Superóxidos/metabolismo , Anestésicos Inalatórios/toxicidade , Animais , Calcimicina/farmacologia , Cães , Isoflurano/toxicidade , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrofotometria , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA