Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 154(2): 024201, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445893

RESUMO

Vacuum ultraviolet (VUV) light at 118 nm has been shown to be a powerful tool to ionize molecules for various gas-phase chemical studies. A convenient table top source of 118 nm light can be produced by frequency tripling 355 nm light from a Nd:YAG laser in xenon gas. This process has a low efficiency, typically producing only nJ/pulse of VUV light. Simple models of the tripling process predict that the power of 118 nm light produced should increase quadratically with increasing xenon pressure. However, experimental 118 nm production has been observed to reach a maximum and then decrease to zero with increasing xenon pressure. Here, we describe the basic theory and experimental setup for producing 118 nm light and a new proposed model for the mechanism limiting the production based on pressure broadened absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA