Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 35(12): 2001-2008, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407484

RESUMO

MOTIVATION: Bacterial infections are a major cause of illness worldwide. However, most bacterial strains pose no threat to human health and may even be beneficial. Thus, developing powerful diagnostic bioinformatic tools that differentiate pathogenic from commensal bacteria are critical for effective treatment of bacterial infections. RESULTS: We propose a machine-learning approach for classifying human-hosted bacteria as pathogenic or non-pathogenic based on their genome-derived proteomes. Our approach is based on sparse Support Vector Machines (SVM), which autonomously selects a small set of genes that are related to bacterial pathogenicity. We implement our approach as a tool-'Bacterial Pathogenicity Classification via sparse-SVM' (BacPaCS)-which is fully automated and handles datasets significantly larger than those previously used. BacPaCS shows high accuracy in distinguishing pathogenic from non-pathogenic bacteria, in a clinically relevant dataset, comprising only human-hosted bacteria. Among the genes that received the highest positive weight in the resulting classifier, we found genes that are known to be related to bacterial pathogenicity, in addition to novel candidates, whose involvement in bacterial virulence was never reported. AVAILABILITY AND IMPLEMENTATION: The code and the resulting model are available at: https://github.com/barashe/bacpacs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Máquina de Vetores de Suporte , Bactérias , Humanos , Proteoma , Virulência
2.
Genome Biol ; 14(3): R21, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23497655

RESUMO

BACKGROUND: Abnormal epigenetic marking is well documented in gene promoters of cancer cells, but the study of distal regulatory siteshas lagged behind.We performed a systematic analysis of DNA methylation sites connected with gene expression profilesacross normal and cancerous human genomes. RESULTS: Utilizing methylation and expression data in 58 cell types, we developed a model for methylation-expression relationships in gene promoters and extrapolated it to the genome. We mapped numerous sites at which DNA methylation was associated with expression of distal genes. These sites bind transcription factors in a methylation-dependent manner, and carry the chromatin marks of a particular class of transcriptional enhancers. In contrast to the traditional model of one enhancer site per cell type, we found that single enhancer sites may define gradients of expression levels across many different cell types. Strikingly, the identified sites were drastically altered in cancers: hypomethylated enhancer sites associated with upregulation of cancer-related genes and hypermethylated sites with downregulation. Moreover, the association between enhancer methylation and gene deregulation in cancerwas significantly stronger than the association of promoter methylationwith gene deregulation. CONCLUSIONS: Methylation of distal regulatory sites is closely related to gene expression levels across the genome. Single enhancers may modulate ranges of cell-specific transcription levels, from constantlyopen promoters. In contrast to the remote relationships between promoter methylation and gene dysregulation in cancer, altered methylation of enhancer sites is closely related to gene expression profiles of transformed cells.


Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Sequências Reguladoras de Ácido Nucleico/genética , Ilhas de CpG/genética , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA