Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(1): 11-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38021250

RESUMO

Background: Cannabis is the most used federally illicit substance among pregnant people in the United States. However, emerging preclinical data show that a significant portion of cannabis constituents, such as Δ9-tetrahydrocannabinol and its bioactive metabolites, readily cross the placenta and accumulate in the fetal brain, disrupting neurodevelopment. Recent research using the Adolescent Brain Cognitive Development (ABCD) Study cohort has linked prenatal cannabis exposure (PCE) to greater neurobehavioral problems and lower total gray and white matter volume in children. Here, we examined the impact of PCE on frontolimbic white matter pathways that are critical for cognitive- and emotion-related functioning, show a high density of cannabinoid receptors, and are susceptible to cannabis exposure during other periods of rapid neurodevelopment (e.g., adolescence). Methods: This study included 11,530 children (mean ± SD age = 118.99 ± 7.49 months; 47% female) from the ABCD Study cohort. Linear mixed-effects models were used to examine the effects of caregiver-reported PCE on fractional anisotropy of 10 frontolimbic pathways (5 per hemisphere). Results: PCE was associated with lower fractional anisotropy of the right (ß = -0.005, p < .001) and left (ß = -0.003, p = .007) fornix, and these results remained significant after adjusting for a variety of covariates, multiple comparisons, fractional anisotropy of all fibers, and using a quality-control cohort only. Conclusions: In sum, we demonstrated small, yet reliable, effects of PCE on white matter integrity during childhood, particularly in the fornix, which plays a crucial role in emotion- and memory-related processes. Future studies are needed to understand the impacts of small changes in brain structure or function on neurodevelopment and risk of neurobehavioral problems.

2.
Psychopharmacology (Berl) ; 240(12): 2585-2595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658879

RESUMO

RATIONALE: The contribution of norepinephrine on the different phases of spatial memory processing remains incompletely understood. To address this gap, this study depleted norepinephrine in the brain and then conducted a spatial learning task with multiple phases. METHODS: Male and female Wistar rats were administered 50 mg/kg/i.p. of DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) to deplete norepinephrine. After 10 days, rats were trained on a 20-hole Barnes maze spatial navigation task for 5 days. On the fifth day, animals were euthanized and HPLC was used to confirm depletion of norepinephrine in select brain regions. In Experiment 2, rats underwent a similar Barnes maze procedure that continued beyond day 5 to investigate memory retrieval and updating via a single probe trial and two reversal learning periods. RESULTS: Rats did not differ in Barnes maze acquisition between DSP-4 and saline-injected rats; however, initial acquisition differed between the sexes. HPLC analysis confirmed selective depletion of norepinephrine in dorsal hippocampus and cingulate cortex without impact to other monoamines. When retrieval was tested through a probe trial, DSP-4-improved memory retrieval in males but impaired it in females. Cognitive flexibility was transiently impacted by DSP-4 in males only. CONCLUSIONS: Despite significantly reducing levels of norepinephrine, DSP-4 had only a modest impact on spatial learning and behavioral flexibility. Memory retrieval and early reversal learning were most affected and in a sex-specific manner. These data suggest that norepinephrine has sex-specific neuromodulatory effects on memory retrieval with a lesser effect on cognitive flexibility and no impact on acquisition of learned behavior.


Assuntos
Norepinefrina , Aprendizagem Espacial , Ratos , Animais , Masculino , Feminino , Norepinefrina/farmacologia , Ratos Wistar , Encéfalo , Memória Espacial , Aprendizagem em Labirinto
3.
Photoacoustics ; 33: 100551, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021296

RESUMO

Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.

4.
Drug Alcohol Depend ; 229(Pt A): 109101, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628096

RESUMO

BACKGROUND: Although fentanyl has gained widespread prominence, there remains a lack of knowledge on this opioid synthetic agonist, particularly related to sex effects. Therefore, we conducted behavioral tests in female and male rats to measure drug abuse-related responses to fentanyl hypothesizing sex-specific responses. METHODS: Using female and male rats, we measured the effects of acute or repeated administration of fentanyl (20 µg/kg) on locomotor activity (LMA) and behavioral sensitization in an open field test. We further measured contextual-reward and associated locomotor activity during training in a conditioned place preference (CPP) paradigm using a low (4 µg/kg) or high (16 µg/kg) dose of fentanyl. Vaginal lavage samples were collected from female rats in the CPP study, and the estrous phase was determined based on the cytological characterization. RESULTS: Female, but not male, rats showed elevated LMA in response to acute fentanyl and behavioral sensitization to repeated administration of fentanyl. Fentanyl produced significant CPP in both sexes, but it was more potent in males. Finally, our secondary investigation of the estrous cycle on fentanyl-CPP suggests that non-estrus phases, likely reflecting high estradiol, may predict the degree of fentanyl preference in females. CONCLUSIONS: Fentanyl was more potent and/or effective to produce LMA and LMA sensitization in females but more potent to produce CPP in males. Furthermore, the role of sex in fentanyl responses varied across endpoints, and sex differences in LMA were not predictive of sex differences in CPP.


Assuntos
Fentanila , Recompensa , Animais , Condicionamento Clássico , Feminino , Fentanila/farmacologia , Locomoção , Masculino , Ratos
5.
Sci Rep ; 10(1): 17935, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087769

RESUMO

Stress in adolescence can regulate vulnerability to traumatic stress in adulthood through region-specific epigenetic activity and catecholamine levels. We hypothesized that stress in adolescence would increase adult trauma vulnerability by impairing extinction-retention, a deficit in PTSD, by (1) altering class IIa histone deacetylases (HDACs), which integrate effects of stress on gene expression, and (2) enhancing norepinephrine in brain regions regulating cognitive effects of trauma. We investigated the effects of adolescent-stress on adult vulnerability to severe stress using the single-prolonged stress (SPS) model in male rats. Rats were exposed to either (1) adolescent-stress (33-35 postnatal days) then SPS (58-60 postnatal days; n = 14), or (2) no adolescent-stress and SPS (58-60 postnatal days; n = 14), or (3) unstressed conditions (n = 8). We then measured extinction-retention, norepinephrine, HDAC4, and HDAC5. As expected, SPS exposure induced an extinction-retention deficit. Adolescent-stress prior to SPS eliminated this deficit, suggesting adolescent-stress conferred resiliency to adult severe stress. Adolescent-stress also conferred region-specific resilience to norepinephrine changes. HDAC4 and HDAC5 were down-regulated following SPS, and these changes were also modulated by adolescent-stress. Regulation of HDAC levels was consistent with the pattern of cognitive effects of SPS; only animals exposed to SPS without adolescent-stress exhibited reduced HDAC4 and HDAC5 in the prelimbic cortex, hippocampus, and striatum. Thus, HDAC regulation caused by severe stress in adulthood interacts with stress history such that seemingly conflicting reports describing effects of adolescent stress on adult PTSD vulnerability may stem in part from dynamic HDAC changes following trauma that are shaped by adolescent stress history.


Assuntos
Comportamento do Adolescente/fisiologia , Comportamento do Adolescente/psicologia , Epigênese Genética , Norepinefrina/metabolismo , Psicologia do Adolescente , Transtornos de Estresse Pós-Traumáticos/etiologia , Estresse Psicológico , Adolescente , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Extinção Psicológica/fisiologia , Histona Desacetilases/metabolismo , Humanos , Masculino , Ratos Sprague-Dawley , Retenção Psicológica/fisiologia , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA