Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phys Rev Lett ; 131(21): 213002, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38072586

RESUMO

We report on the observation of confinement-induced resonances for strong three-dimensional (3D) confinement in a lattice potential. Starting from a Mott-insulator state with predominantly single-site occupancy, we detect loss and heating features at specific values for the confinement length and the 3D scattering length. Two independent models, based on the coupling between the center-of-mass and the relative motion of the particles as mediated by the lattice, predict the resonance positions to a good approximation, suggesting a universal behavior. Our results extend confinement-induced resonances to any dimensionality and open up an alternative method for interaction tuning and controlled molecule formation under strong 3D confinement.

2.
Mol Ecol ; 27(5): 1245-1260, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411444

RESUMO

Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries between Pinus strobiformis and Pinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate-associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build-up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.


Assuntos
Hibridização Genética , Pinus/genética , Fluxo Gênico , Frequência do Gene , Modelos Teóricos , Pinus/fisiologia , Isolamento Reprodutivo , Especificidade da Espécie
3.
Chemphyschem ; 17(22): 3747-3755, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27748009

RESUMO

A system of two dipolar particles that are confined in a double-well potential and interact via a realistic isotropic interaction potential is investigated as a protoype for ultracold atoms with a magnetic dipole moment or ultracold dipolar heteronuclear diatomic molecules in double-well traps or in optical lattices. The resulting energy spectrum is discussed as a function of the dipole-dipole interaction strength. The variation of the strength of the dipole-dipole interaction is found to lead to various resonance phenomena. Among those are the previously discussed inelastic confinement-induced resonances as well as the dipole-induced resonances. It is found that the double-well potential gives rise to a new type of resonances, tunnel-induced dipolar ones.

4.
J Chem Theory Comput ; 20(3): 1244-1251, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38215397

RESUMO

With the recent advances in the development of devices capable of performing quantum computations, a growing interest in finding near-term applications has emerged in many areas of science. In the era of nonfault tolerant quantum devices, algorithms that only require comparably short circuits accompanied by high repetition rates are considered to be a promising approach for assisting classical machines with finding a solution on computationally hard problems. The ADAPT approach previously introduced in Nat. Commun. 10, 3007 (2019) extends the class of variational quantum eigensolver algorithms with dynamically growing ansätze in order to find approximations to the ground and excited state energies of molecules. In this work, the ADAPT algorithm has been combined with a first-quantized formulation for the hydrogen molecule in the Born-Oppenheimer approximation, employing the explicitly correlated basis functions introduced in J. Chem. Phys. 43, 2429 (1965). By the virtue of their explicit electronic correlation properties, it is shown in classically performed simulations that chemical accuracy (<1.6 mHa) can be reached for ground and excited state potential curves using reasonably short circuits.

5.
Chemphyschem ; 14(7): 1438-44, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23585248

RESUMO

In a recent PACER (Probing Attosecond dynamics with Chirp-Encoded Recollisions) experiment on ammonia that comprises a comparison of the high-harmonic spectra of the isotopes NH3 and ND3, the nuclear dynamics of the created ammonia cation is traced with a time resolution of about 100 attoseconds. For modelling the experiment the autocorrelation functions between the neutral initial state and the ionic wave packet are extracted from experimental photoelectron spectra incorporating a correction for the geometry-dependent strong-field ionisation probability. Good agreement is found between model and experiment, but in addition an unexpected maximum in the autocorrelation ratio is predicted by the model, however occurring at 5 fs and thus outside the experimentally covered time interval. In this work the autocorrelation functions are calculated explicitly using a one-dimensional model for describing the inversion motion of ammonia and its cation, adopting a position-dependent mass for considering the coupling with the stretching mode of the hydrogen atoms in neutral ammonia. This results in a clear physical picture explaining the occurrence of the previously predicted maximum in the ratio of the autocorrelation functions. Furthermore, different initial states and two different ways of incorporating strong-field corrections to the Franck-Condon approximation are briefly discussed.


Assuntos
Amônia/química , Teoria Quântica , Cátions/química , Movimento (Física) , Espectroscopia Fotoeletrônica , Fatores de Tempo
6.
Phys Rev Lett ; 109(7): 073201, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006368

RESUMO

A theoretical model is presented describing the confinement-induced resonances observed in the recent loss experiment of Haller et al. [Phys. Rev. Lett. 104, 153203 (2010)]. These resonances originate from possible molecule formation due to the coupling of center-of-mass and relative motion. A corresponding model is verified by ab initio calculations and predicts the resonance positions in 1D as well as in 2D confinement in agreement with the experiment. This resolves the contradiction of the experimental observations to previous theoretical predictions.

7.
Phys Rev Lett ; 107(8): 083001, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929165

RESUMO

High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H(2)O and D(2)O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by solving the time-dependent Schrödinger equation to simulate strong field ionization and high harmonic generation from the water isotopes. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules.

8.
Front Plant Sci ; 12: 628795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995433

RESUMO

Insect damage to cones and seeds has a strong impact on the regeneration of conifer forest ecosystems, with broader implications for ecological and economic services. Lack of control of insect populations can lead to important economic and environmental losses. Pinus strobiformis is the most widespread of the white pines in Mexico and is widely distributed throughout the mountains of northern Mexico. Relatively few studies have examined insect damage to the cones and seeds of these pines, especially in Mexico. In this study, we therefore analyzed insect damage to cones and seeds of P. strobiformis in Mexico by using X-ray and stereomicroscopic analysis. The specific objectives of the study were (a) to characterize insect damage by measuring external and internal cone traits, (b) to assess the health of seeds and cones of P. strobiformis in the Sierra Madre Occidental, Mexico, and (c) to estimate the relative importance of the effects of different environmental variables on cone and seed damage caused by insects. We found that 80% of P. strobiformis seeds and 100% of the tree populations studied had damage caused by insects. Most seeds were affected by Leptoglossus occidentalis, Tetyra bipunctata, Megastigmus albifrons, and the Lepidoptera complex (which includes Apolychrosis synchysis, Cydia latisigna, Eucosma bobana, and Dioryctria abietivorella). The cones of all tree populations were affected by some type of insect damage, with Lepidoptera causing most of the damage (72%), followed by Conophthorus ponderosae (15%), the hemipteran L. occidentalis (7%), and the wasp M. albifrons (6%). The proportion of incomplete seeds in P. strobiformis at the tree level, cone damage by M. albifrons and seed damage in L. occidentalis were associated with various climate and soil variables and with crown dieback. Thus, cone and seed insect damage can be severe and potentially impact seed production in P. strobiformis and the reforestation potential of the species. The study findings will enable managers to better identify insects that cause damage to cone and seeds. In addition, identification of factors associated with damage may be useful for predicting the levels of insect predation on seeds and cones.

9.
Phys Rev Lett ; 104(22): 223001, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867163

RESUMO

The ionization probability of N2, O2, and CO2 in intense laser fields is studied theoretically as a function of the alignment angle by solving the time-dependent Schrödinger equation numerically assuming only the single-active-electron approximation. The results are compared to recent experimental data [D. Pavicic, Phys. Rev. Lett. 98, 243001 (2007)] and good agreement is found for N2 and O2. For CO2 a possible explanation is provided for the failure of simplified single-active-electron models to reproduce the experimentally observed narrow ionization distribution. It is based on a field-induced coherent core-trapping effect.

10.
Evol Appl ; 13(1): 195-209, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892952

RESUMO

A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well-developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization-mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio-temporal changes in the central location of a hybrid zone between two recently diverged species of pines: Pinus strobiformis and P. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual-based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.

11.
Front Plant Sci ; 11: 559697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193485

RESUMO

The phenotype of trees is determined by the relationships and interactions among genetic and environmental influences. Understanding the patterns and processes that are responsible for phenotypic variation is facilitated by studying the relationships between phenotype and the environment among many individuals across broad ecological and climatic gradients. We used Pinus strobiformis, which has a wide latitudinal distribution, as a model species to: (a) estimate the relative importance of different environmental factors in predicting these morphological traits and (b) characterize the spatial patterns of standing phenotypic variation of cone and seed traits across the species' range. A large portion of the total variation in morphological characteristics was explained by ecological, climatic and geographical variables (54.7% collectively). The three climate, vegetation and geographical variable groups, each had similar total ability to explain morphological variation (43.4%, 43.8%, 51.5%, respectively), while the topographical variable group had somewhat lower total explanatory power (36.9%). The largest component of explained variance (33.6%) was the four-way interaction of all variable sets, suggesting that there is strong covariation in environmental, climate and geographical variables in their relationship to morphological traits of southwest white pine across its range. The regression results showed that populations in more humid and warmer climates expressed greater cone length and seed size. This may in part facilitate populations of P. strobiformis in warmer and wetter portions of its range growing in dense, shady forest stands, because larger seeds provide greater resources to germinants at the time of germination. Our models provide accurate predictions of morphological traits and important insights regarding the factors that contribute to their expression. Our results indicate that managers should be conservative during reforestation efforts to ensure match between ecotypic variation in seed source populations. However, we also note that given projected large range shift due to climate change, managers will have to balance the match between current ecotypic variation and expected range shift and changes in local adaptive optima under future climate conditions.

12.
Thyroid ; 29(12): 1755-1764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31456501

RESUMO

Background: Thyroid hormone status in hypothyroidism (HT) downregulates key elements in Ca2+ handling within the heart, reducing contractility, impairing the basal energetic balance, and increasing the risk of cardiovascular disease. Mitochondrial Ca2+ transport is reduced in HT, and tolerance to reperfusion damage has been documented, but the precise mechanism is not well understood. Therefore, we aimed to determine the stoichiometry and activity of the mitochondrial Ca2+ uniporter or uniplex in an HT model and the relevance to the opening of the mitochondrial permeability transition pores (mPTP) during ischemia/reperfusion (I/R) injury. Methods: An HT model was established in Wistar rats by treatment with 6-propylthiouracil for 28 days. Uniplex composition and activity were determined in cardiac mitochondria. Hearts were perfused ex vivo to induce I/R injury, and functional parameters related to contractility and tissue viability were evaluated. Results: The cardiac stoichiometry between two subunits of the uniplex (MICU1/MCU) increased by 25% in animals with HT. The intramitochondrial Ca2+ content was reduced by 40% and was less prone to the mPTP opening. After I/R injury, ischemic contracture and the onset of ventricular fibrillation were delayed in animals with HT, concomitant with a reduction in oxidative damage and mitochondrial dysfunction. Conclusions: Our results suggest that HT is associated with an increase in the cardiac MICU1/MCU ratio, thereby changing the stoichiometry between these subunits to increase the threshold to cytosolic Ca2+ and reduce mitochondrial Ca2+ overload. Our results also demonstrate that this HT model can be used to explore the role of mitochondrial Ca2+ transport in cardiac diseases due to its induced tolerance to cardiac damage.


Assuntos
Cálcio/metabolismo , Hipotireoidismo/metabolismo , Hipotireoidismo/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Antitireóideos , Citosol/metabolismo , Hipotireoidismo/induzido quimicamente , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Propiltiouracila , Ratos , Ratos Wistar , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 2): 016701, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005557

RESUMO

We represent low dimensional quantum mechanical Hamiltonians by moderately sized finite matrices that reproduce the lowest O(10) bound-state energies and wave functions to machine precision. The method extends also to Hamiltonians that are neither Hermitian nor PT symmetric and thus allows one to investigate whether or not the spectra in such cases are still real. Furthermore, the approach is especially useful for problems in which a position-dependent mass is adopted, for example in effective-mass models in solid-state physics or in the approximate treatment of coupled nuclear motion in molecular physics or quantum chemistry. The performance of the algorithm is demonstrated by considering the inversion motion of different isotopes of ammonia molecules within a position-dependent mass model and some other examples of one- and two-dimensional Hamiltonians that allow for the comparison to analytical or numerical results in the literature.


Assuntos
Algoritmos , Modelos Químicos , Teoria Quântica , Simulação por Computador
14.
Phys Rev Lett ; 97(10): 103003, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-17025811

RESUMO

The formation of coherent vibrational wave packets in the electronic ground state of neutral molecules in intense ultrashort laser pulses and their subsequent detection by means of recently developed pump-probe experiments are discussed. The wave packet formation is due to the pronounced dependence of the strong-field ionization rate on the internuclear distance. This leads to a deformation of the initial wave function due to an internuclear-distance dependent depletion. The phenomenon is demonstrated with a time-dependent wave packet study for molecular hydrogen.

15.
Rev. costarric. cienc. méd ; 23(3/4): 149-155, jul.-dic. 2002. ilus
Artigo em Espanhol | LILACS | ID: lil-403900

RESUMO

La microscopia electrónica ha avanzado mucho desde su invención hace 60 años y su aplicación en las ciencias biomédicas ha sido muy grande. Paralelo al desarrollo de nueva tecnología en este campo y que ha permitido alcanzar una resolución de 1,4 A para el microscopio de transmisión y de 30 a 70 A para el microscopio de rastreo, se le han adaptado a estos microscopios otros aparatos que permiten realizar un análisis elemental de la muestra que está siendo examinada en el microscopio. La ventaja de este procedimiento es que la muestra que está siendo observada en tiempo real puede ser analizada en su composición química sin ser destruida. Adicionalmente es posible realizar un análisis de la distribución de sus elementos en toda la muestra. La aplicación de este nuevo método en las ciencias biológicas es muy amplia. Podemos detectar materiales inorgánicos como el plomo, arsénico, calcio, mercurio, alumnio, etc, en diferentes tejidos del cuerpo, obtenidos de biopsia o autopsia. Una aplicación práctica es el análisis de la composición de cálculos vesiculares o urinarios determinando de esta manera la fisiopatogenia del proceso. Palabras clave: Microscopia electrónica de rastreo, espectrómetro de rayos X, nefrolitiasis, cálculos urinarios.


Assuntos
Cálculos Urinários/diagnóstico , Cálculos Urinários , Cálculos Urinários , Microanálise por Sonda Eletrônica , Microscopia Eletrônica de Varredura/classificação , Microscopia Eletrônica de Varredura , Microscopia Eletrônica , Análise Espectral , Costa Rica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA