Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(3): 3826-3839, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34402010

RESUMO

The accelerated release of heavy metals into the coastal environments due to increasing anthropogenic activities poses a severe threat to local marine ecosystems and food chains. Although some heavy metals are essential nutrients for plants and animals, higher concentrations can be toxic and hazardous. To mitigate this threat, developing quantifiable proxies for monitoring heavy metal concentrations in near-shore marine environments is essential. Here, we describe culture experiments to quantify uptake of some heavy metals using live juvenile specimens of the large benthic foraminifera (LBF) Amphisorus hemprichii collected from the subtropical waters of Rottnest Island located ~20 km offshore Perth, South West Australia. The uptake of Mn, Ni, Cd, and Pb in the newly precipitated chambers of Amphisorus hemprichii in the laboratory was characterized using the micro-analytical technique, laser ablation inductively coupled plasma mass spectrometry. We found no significant increase in Mn, Ni, Cd, and Pb incorporation in the tests of Amphisorus hemprichii with increasing temperature and light intensities. Importantly, we found that changes in the concentrations of Mn, Ni, and Cd in the A. hemprichii tests are directly proportional to those in the culture solution over a wide range of concentrations. The calculated partition coefficients for Mn, Ni, and Cd from our culture experiments are 1.3±0.2, 0.3±0.04, 2.6±0.3, respectively. These multi-element calibration studies now enable A. hemprichii to be utilized as a naturally occurring bio-archive to quantitatively monitor the anthropogenic pollution of Mn, Ni, and Cd in coastal waters.


Assuntos
Foraminíferos , Metais Pesados , Poluentes Químicos da Água , Animais , Efeitos Antropogênicos , Carbonato de Cálcio , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Água do Mar , Poluentes Químicos da Água/análise
2.
Mar Pollut Bull ; 162: 111918, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341078

RESUMO

Anthropogenic lead (Pb) contamination resulting from the rapid growth of industrialization in coastal environments poses significant challenges. In this study, we report a novel approach utilising the large benthic foraminifera Amphisorus hemprichii as a biogeochemical archive for monitoring Pb pollution in tropical to warm-temperate coastal waters. Live juvenile specimens of A. hemprichii were cultured in the laboratory for 16 weeks with a range of seawater Pb concentrations. Lead uptake in both newly grown and pre-existing chambers of individual specimens was characterised using the microanalytical technique, Laser ablation-ICP mass spectrometry. We found that Pb concentration in the tests of cultured foraminifera in the laboratory is proportional to seawater [Pb] with the lead partition coefficient (KDPb) of 8.37 ± 0.3. This calibration together with a new biomineralisation model now enables A. hemprichii to be utilised as a naturally occurring bio-archive to quantitatively monitor anthropogenic Pb pollution in coastal waters.


Assuntos
Foraminíferos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA