RESUMO
The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of â¼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.
Assuntos
Visão Ocular , Córtex Visual/citologia , Córtex Visual/embriologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ácido Glutâmico/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , RNA-Seq , Transcriptoma/genética , Visão Binocular/genética , Ácido gama-Aminobutírico/metabolismoRESUMO
We describe a computational workflow to analyze single-cell RNA-sequencing (scRNA-seq) profiles of axotomized retinal ganglion cells (RGCs) in mice. Our goal is to identify differences in the dynamics of survival among 46 molecularly defined RGC types together with molecular signatures that correlate with these differences. The data consists of scRNA-seq profiles of RGCs collected at six time points following optic nerve crush (ONC) (see companion chapter by Jacobi and Tran). We use a supervised classification-based approach to map injured RGCs to type identities and quantify type-specific differences in survival at 2 weeks post crush. As injury-related changes in gene expression confound the inference of type identity in surviving cells, the approach deconvolves type-specific gene signatures from injury responses by using an iterative strategy that leverages measurements along the time course. We use these classifications to compare expression differences between resilient and susceptible subpopulations, identifying potential mediators of resilience. The conceptual framework underlying the method is sufficiently general for analysis of selective vulnerability in other neuronal systems.